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Abstract

Benchmark datasets for autonomous driving, such as KITTI, nuScenes, Argoverse,
or Waymo are realistic but designed to be faultless. These datasets contain limited
errors, difficult driving maneuvers, or other corner cases. We propose a framework
for perturbing autonomous vehicle datasets, the DANGER framework, which gen-
erates edge-case images on top of current autonomous driving datasets. The input
to DANGER are photorealistic datasets from real driving scenarios. We present the
DANGER algorithm for vehicle position manipulation and the interface towards the
renderer module, and present five scenario-level dangerous primitives generation
applied to the virtual KITTI and virtual KITTI 2 datasets. Our experiments prove
that DANGER can be used as a framework for expanding the current datasets to
cover generative while realistic and anomalous corner cases.

1 Introduction

Since the release of the KITTI [Geiger et al., 2012] dataset, autonomous driving research has been
data-driven. Autonomous vehicles (AVs) promise to decrease vehicle fatalities and increase safety in
the modern automobile. However, the majority of datasets [Chang et al., 2019, Wilson et al., 2021,
Sun et al., 2020, Caesar et al., 2020, Geiger et al., 2012] and derived algorithms [Cheng et al., 2020,
Xu et al., 2022, Girshick, 2015, Ren et al., 2015, Reading et al., 2021, Ganeshan et al., 2021, Cai
et al., 2021, Weng et al., 2020, Zhou et al., 2020] are used for benchmarking and standardized on
perfectly curated datasets, This causes two issues: (a) these algorithms are specially designed and
hard-code into a workable scenario (b) solutions are focused on accuracy on a single dataset, rather
than robustness. Instead, we want autonomous driving solutions to be able to deal with different
driving scenarios. A real road scene is often dangerous and full of all kinds of unexpected events.
There is an immediate need for AI systems to consider these event, especially in the context of
implementing algorithms on actual on-road vehicles [Shalev-Shwartz et al., 2017]. Instead, we
propose the development of a framework to mimic the kinds of “one-off” scenarios humans may
encounter in driving tests. We use this to validate that AI systems can generalize in real-world
driving environments. We describe an iterative procedure for creating out-of-domain examples for
autonomous driving, or corner cases, based on the existing AV standard datasets.

It is challenging to design benchmarks and datasets. Therefore, we contribute a general framework
for generating photo-level realistic driving scenes with custom trajectory inputs. Our framework,
“DANGER”, supports user-defined vehicle trajectories and poses to complete a sequence of frames of
data generation. For example, a user can define a left-turn maneuver, which can be included in the
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data set. DANGER also supports the distortion and deletion of vehicles in an individual frame and
can simulate illogical special camera failure modes. In summary, our key contributions are:

• We introduce DANGER, a framework for the generation of Danger-Aware datasets. DAN-
GER is a generator that can enhance robustness. It generates new scenarios with user input:
a set of primitives. Each primitive is a vehicle driving trajectory and posture over time: a
complete sequence of frames of data generation.

• DANGER supports the shifting and deletion of cars in individual frame and can simulate
illogical special camera failure modes.

• Our DANGER implementation includes �ve scenario-level dangerous primitives applied on
virtual KITTI and virtual KITTI 2 to generate more robust, “DANGER-vKITTI” datasets.

• We evaluate DANGER on a corner case score evaluation and via human study. Our results
demonstrate that DANGER and our generated scenarios are realistic, novel, anomalous, or
risky. These dataset augmentations can help increase the robustness and range of scenarios
in the original datasets.

To prove that DANGER that can generate anomalous driving scenarios, we implemented quantitative
and qualitative experiments on two datasets: Virtual KITTI [Gaidon et al., 2016b] and Virtual KITTI 2
[Cabon et al., 2020]. Our code for the benchmarks and results of experiments have been open-sourced
under the MIT License. It is available at:https://github.com/link (Link is hidden for
double-blind review).

2 Related Work

Today's deep neural networks are highly dependent on goodness-of-data and obey the “garbage
in, garbage out" rule of thumb [Vidgen and Derczynski, 2020, Kim et al., 2016]. As Sambasivan
et al. [2021] suggested, there is no goodness-of-�t without goodness-of-data. In the absence of
standardized metrics to characterize “the goodness” of data, conventional visual perception methods
are often not able to detect dangerous scenarios. This is because corner cases have not been witnessed
during training [Thomas and Uminsky, 2020, Breitenstein et al., 2021]. However, �tting metrics
does not represent the phenomenological �delity and validity of the data. Their detection is based on
sanitized data, lacking anomalous events: low possibility but realistic dangerous driving scenarios.
Therefore, we need reliable detection and understanding of corner cases, which will further increase
safety in autonomous driving.

2.1 Autonomous Driving Datasets

KITTI [Geiger et al., 2012] is the pioneering benchmark datasets for use in autonomous driving
by providing LiDAR sensors, stereo cameras, and GPS/IMU data. Compared with KITTI, Waymo
[Sun et al., 2020] provides a large-scale, high-quality dataset with high-intensity annotations and
higher annotation frequency using �ve cameras and �ve LiDARs from different angles and locations.
nuScenes [Caesar et al., 2020] provides 360°coverage from the LiDAR, radar, and camera sensors.
Argoverse [Chang et al., 2019] contributes detailed geometric and semantic maps of the environment,
and its sibling Argoverse2 [Wilson et al., 2021] has the most extensive self-driving taxonomy with HD
maps that include real-world changes. Cityscapes [Cordts et al., 2016] provides semantic, instance-
wise annotations for semantic understanding of urban street scenes. The current state-of-the-art
(SOTA) datasets are inherently designed for independent model training based on various sensors
rather than handling real-world challenges. As Shalev-Shwartz et al. [2017] estimated that AVs need
to drive 30 billion miles to get enough statistical evidence to prove that AVs are three times safer
than human drivers, yet leading Waymo claims their test �eet has run 20+ million miles on public
roads [Schwall et al., 2020]. Therefore, corner case or out-of-distribution data in existing autonomous
driving datasets are insuf�cient.

2.2 Synthetic Datasets

Advances in computer graphics have made it possible to easily annotate and generate virtual datasets,
such as SYNTHIA, Virtual KITTI (vKITTI), and Virtual KITTI 2 (vKITTI2), include various scene
types under different weather, environment, and lighting conditions [Ros et al., 2016, Gaidon et al.,
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2016b, Cabon et al., 2020]. Johnson-Roberson et al. [2016] demonstrate that SOTA neural networks
trained using only synthetic data perform better than the same architectures trained on real-world
dataset. CARLA [Dosovitskiy et al., 2017] supports custom waypoints input for vehicle trajectory
generation, but it is projected in a virtual city built in a game engine without any modi�cation
compatibility to an existing real-world dataset.

2.3 2D Image Synthesis

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014], have been used for a variety of
image synthesis exercises, including image generation [Radford et al., 2015, Arjovsky et al., 2017,
Karras et al., 2017], image-to-image translation [Isola et al., 2017, Zhu et al., 2017], text-to-image
synthesis [Zhang et al., 2017, Reed et al., 2016], and inpainting [Pathak et al., 2016]. StyleGAN
[Karras et al., 2019a] generates high-quality, high-resolution face images. StyleGan can also generate
car-like images; however, �aws remain in the generated dataset. Firstly, the generated images were
frequently displayed at a 45-degree exhibition angle rather than the perspective view of a car in
motion. Second, the shape of some of the cars was distorted and produced a peculiar effect of
indistinguishable front and rear of the car. StyleGAN2 [Karras et al., 2019b] �xed the artifacts
problem remained in StyleGAN. However, both StyleGAN and StyleGAN2 cannot generate images
via controlling car object-dependent appearance, pose, and size in 3D.

Recent studies [Ramesh et al., 2021, 2022, Saharia et al., 2022] showed the SOTA GPT-based methods
of generating photorealistic images from text. Nevertheless, the above methods generate images that
have low �delity and cannot generate continuous frame images or videos.

Several studies [Ratner et al., 2017, Cubuk et al., 2019] learned transformation and color adjustment
policies, such as rotate, shear, shear, contrast, or, hue. These strategies, however, are limited to 2D
images or color space and are challenging to generate new viewpoint data. Contrary to 2D, we need a
disentangled 3D-aware image synthesis model that allows a user to edit the viewpoint, object shape,
or texture independently [Zhu et al., 2018].

2.4 3D-aware Image Synthesis

Several recent studies [Yao et al., 2018, Schwarz et al., 2020, Liao et al., 2020] developed multiple
GAN-based 3D-aware image synthesis methods including 3D-friendly features: interpretable, disen-
tangled scene representation, viewpoint manipulation, and 3D Controllable. Wu et al. [2017], Liao
et al. [2020], and Greff et al. [2022] inspired by rendering a 2D image by 3D game engine, which
treats images as a projection of the 3D world. The learned 3D space can be potentially useful for
various tasks such as image reasoning tasks in the dangerous scene understanding.

Inspired by Mildenhall et al. [2020], GRAF [Schwarz et al., 2020] introduces GANs to implement
Neural Radiance Fields, and uses conditional GAN [Mirza and Osindero, 2014] to achieve controlla-
bility of the rendered object. GIRAFFE [Niemeyer and Geiger, 2021] uses one Neural Radiance Field
per object in order to combine objects from different scenes. This enables the movement and rotation
of objects in the generative new image. GRAF and Liao et al. [2020] can generate images of cars in
different poses, but the resulting backgrounds are often monochromatic or pure white. 3D-SDN [Yao
et al., 2018] and PNF [Kundu et al., 2022], are the algorithm that can modify both the 3D pose and
position of the spawning vehicles while remaining realistic city and road scenes.

2.5 Robustness

Our framework is a hybrid knowledge representation layer that improves robustness by introducing
out-of-domain semantically-signi�cant samples. Our work is similar to a knowledge-driven cognitive
model approach improve AI system robustness [Marcus, 2020], with a focus on robustifying au-
tonomous vehicle data sets with prede�ned primitives. We argue that using a primitive representation,
similar to the abstract script-like representation in language [Schank, 1975, Borchardt, 1992], can
make the underlying opaque system more understandable. Amini et al. [2022] demonstrates that
VISTA simulator can generate novel camera images. However, the generated photo-realistic pictures
can only be obtained via changing the driving angle of the ego vehicle but not the pose of other cars
on the road.
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Figure 1:DANGER framework, primitives, and visualization of scene editing. (a) Primitive
slalom lane change function (b) cut-in function (c) braking function (d) DANGER contains a
renderer/de-renderer module, primitive function module, and generated descriptive �le that can help
users to develop a wide variety of corner-cases (e) a slalom-lane-change scene editing of scene0006
shown in world coordinate. The orange red curve is the original trajectory of car objecttid 4, and
the light blue curve is the corresponding edited trajectory in world coordinate.

Our work is inspired by prior work on a stress testing framework for autonomous system veri�cation
and validation [Falco and Gilpin, 2021]. The key idea for DANGER is that the robustness is not static,
but a series of stress tests that can be automatically generated. Our goal is to use these generative
examples to generate counterfactuals, similar to previous work using adversarial examples for
explaining counterfactuals [Pawelczyk et al., 2022]. Our contribution is a set of semantic primitives,
similar to the semantic layer in DNNs discussed in [Browne and Swift, 2020].

According to the systematization of corner case detection complexity proposed by Breitenstein et al.
[2021], our framework is designed to obtain the most dangerous anomalous scenario for a detector,
and we also answer the research question, `How to generate or record corner case from descriptions?',
proposed by Bogdoll et al. [2021]. Breitenstein et al. [2021] de�ned a corner case as a non-predictable
relevant object/class in a relevant location, Breitenstein et al. [2021] extended the de�nition of corner
case level by giving three most dangerous scenes: the anomalous scenario is a potentially dangerous
unknown object, the novel scenario is a harmless unknown object, the risky scenario is a potentially
dangerous but known object. In the result section, we present the design our primitives.

3 Method

Renderer/de-renderer module The 3D scene de-rendering networks (3D-SDN) [Yao et al., 2018]
is an optimal algorithm that generates photo-level realistic synthetic images. It employs an encoder-
decoder architecture with three branches: scene semantics, object geometry, 3D pose, and textual
appearance of objects and the background. As shown in Figure 1 (d), three branches intend to learn a
scene's semantic segmentation, infer the object shape and 3D pose, and encode the appearance of each
object and background segment. Disentangling 3D geometry and pose from the given scene enables
3D-aware scene manipulation in image coordinate with a target object location(u; v), orientation
poser y , and(delete, modify) operations described in a JSON �le.

In the result section, we use 3D-SDN as the renderer/de-renderer module to demonstrate the feasibility
of our framework. In practice, modules such as PNF can also be selected [Kundu et al., 2022].

Primitives To augment the input dataset, we de�ne �ve danger-aware primitives:Exit parking ,
Cut-in Opposite , Cut-in , Slalom Lane Change , andBraking . Detail of these primi-
tives will be introduced in the results section.
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3.1 Scene Editing Computation

Our approach is adaptive. The object's position can be edited in the real-world 2D plane according to
any arbitrary function. At the same time, the implementation of editing in the world coordinate system
requires reading the position information of the object and transforming it into the world coordinate
system. The vKITTI dataset was designed to match the multi-object tracking (MOT) evaluation
benchmark of KITTI. Therefore, the MOT ground truth and exact position of each car object are
provided in the foldermotgt . The following object annotation and terminology we inherited from
vKITTI is detailed in Gaidon et al. [2016b,a] and supplementary material.

We assume that the original driving trajectory of the target vehicle object is a straight line. Given a
imageI 2 RW � H � 3 de�ned byscene , topic , tid 1, andframe with known camera intrinsic
matrix K 2 R3� 4 and camera extrinsic matrix[R jt ], we can convert the position of an object in
world coordinate, camera coordinate, or pixel coordinate by Equation (1) and Equation (3), where
R 2 R3� 3 andt 2 R3� 1 indicate the rotation and translation matrices [Hartley and Zisserman,
2003]. Pc 2 R4� 1 is the 3D point position in camera coordinates andPw 2 R4� 1 is the 3D point
position in world coordinates. In both cases, they are represented in homogeneous coordinates. A
camera extrinsic matrixM 2 R4� 4 is used to denote a projective mapping from world coordinates to
pixel coordinates.
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The elements of object's center position vectorPc can be acquired from the MOT ground truth data
x3d , y3d , z3d , andh3d , and the correspondingPw will be easily obtained by apply the inverse
of frame-dependent matrixM . In the x-z plane, arbitrary vehicle poses can be generated according
to the primitive function, wherer 0

y is a unit tangent vector to the curve at(x0
w ; z0

w ) representing the
target orientation of the car object. The trajectory curve and heading vectors are generated at the
origin and then translated to the desired starting point. The curve was further rotated by� using the
rotation matrixR � to align with the original trajectory's slopea, wherea, � are the slope and angle
of original path,R is a corresponding rotation matrix [Weisstein, 2003]. A detailed algorithm of the
implementation of the primitive operation in 3D world coordinate is shown in the supplementary
material.

4 Results

In this section, we present thebasedataset and primitives we used in our generation framework.
We evaluate our results in two aspects that focus on the corner cases generation capability and the
realistic level of our dangerous maneuver via a human study.

We hypothesize that adding risky maneuvers to the dataset will result in a higher corner case score
for the ego vehicle. We performed a numerical analysis of our generated data frames by applying a
corner case detector that considers object-level and predictability. We also validated our results with
a user study.

4.1 Dangerous Corner Case Generation

4.1.1 Primitives

We designed �ve scenario-level dangerous corner cases in the world space based on the vKITTI
dataset. These primitives are deliberately selected for each scene presented in the vKITTI according

1A unique track identi�cation number for each object instance in the scene.
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to the vehicle object's position and motion. Though these are hand-curated, each primitive follows
the de�nition of a scenario-level corner case that is an anomalous or risky scenario derived from the
real-world. We also refer to the safety assist test procedure and autonomous vehicle collision report
as templates for our dangerous corner cases [Van Ratingen, 2017, California DMV, 2022e].

Cut-in Many accidents are caused by neighboring vehicles suddenly driving in front of a moving
car dangerously, either due to the driver impatiently overtaking or an unintentional aggressively
traverse due to forgetting the highway exits. To achieve a realistic cut-in lane change, we de�ne
the single-lane change curvature according to the sinusoidal ramp function [Sledge Jr and Marshek,
1997] as following:

y = ye(
x
xe

�
1

2� sin(2� x
x e

)
); (4)

wherexe is the longitudinal offset of the target position,ye is the lateral lane-change offset of the
target position as shown in Figure 1 (b). The forwarding trajectory will be rotated and aligned with
the camera space's longitudinal axiszc. We chose two vehicles withtid 1 and 2 in scene0018 to
simulate two scenarios of cut-in ego vehicle and overtaking with nine sets of parameters, respectively.

Exit Parking A careless driver may suddenly place its front end out of a line of parked cars on either
side of a narrow street. We assign a trajectory generated by the cut-in function presented above to
two distinguished car objects withtid 63 and 70 in scene0001 . Among the nine sets of parameters
for each vehicle,xe was chosen as a distance of 4 m for one and a half vehicle lengths.

Cut-in on OppositeWe incorporate the rotated cut-in function to a car (tid 0) driving in the opposite
direction. The rampage driver's driving leads to an upcoming accident that potentially causes severe
injury in scene0002 . By combining sixxe and threeye parameters, we obtained eighteen sets of
different driving conditions distributed in a two-dimensional space of ninety square meters.

Slalom Lane ChangeAccording to Wang [1994]'s study, lane change crashes caused over 244,000
accidents in 1991, accounting for 4.0% of all accidents in the US. Therefore, we aim to design a novel
scenario that a driver can barely decide whether other car objects choose to make a lane change or
not. As illustrated in Figure 1 (a), we borrow the idea from the slalom test in automotive engineering
and assign a parameter-dependent sine-wave to thetid 2 and 7 in scene0006 as follows:

y = Asin (2�fx ) (5)

whereA is the lateral offset amplitude in meters, andf is the steering input frequency in Hz.

Braking We simulate a constant deceleration maneuver in scene0020 whentid 16 applies a
braking pedal by exploiting the inverted trapezoid piecewise function:

at =

8
>>>>><

>>>>>:

0; t < t 1

� ( t � t 1 ) �g
t 2 � t 1

; t1 � t < t 2

� �g; t 2 � t < t 3

� ( t 4 � t ) �g
t 4 � t 3

; t3 � t < t 4

0; t4 � t

(6)

whereat is the time dependent acceleration of the editing vehicle,� andg constitute a uniform
deceleration value,t i is the timestamp when the braking caliper initiated and stopped. As illustrated
in Figure 1 (c), we replace the object speed in the original video frame with the target braking speed
curve obtained by �ltering and integrating the generated acceleration curve. Then a new waypoint
can be generated in world coordinates to replace the original.

For each primitive, we also calculate the rotation� r y , zoomed-in factor� , and the transformed
(u; v) pixels in camera space. All operation parameters are packaged into a JSON �le for 3D-SDN
processing. For the detailed JSON and parameter settings, see our supplementary material.

4.1.2 Datasets

vKITTI and vKITTI2 [Gaidon et al., 2016b, Cabon et al., 2020] contain �ve scenes of photo-realistic
videos synthesized from virtual worlds under various lighting and weather conditions, respectively.
vKITTI2 has more photo-realistic images by utilizing the updated Unity game engine enhancements.
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