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ABSTRACT The iterative learning control (ILC) based on the linear frequency-domain model has been
employed to replicate the road conditions for the vehicle durability testing in the laboratory. Generally,
the vehicle and the multi-axial hydraulic test rig behave strong nonlinearities, which requires a large number
of iterations to correct the tracking error. Hence, the process of drive file (i.e., the input signals which
drive the actuators of the test rig) generation is time-lengthy and tedious. A method that combines the ILC
with the Quasi-Newton algorithm over the complex space (QNILC) is developed to speed up the drive file
construction for the multi-axial vibration test rig. The impedance matrix can be updated with Broyden’s
method to reduce the modeling errors and make the iteration more robust. An auxiliary estimating loop is
inserted into the iteration process to attain an optimal learning gain. The convergence of the proposed method
has been proven to be monotonic. This approach is validated through simulation, where the target signals
are the real-life spindle forces gathered from the wheel force transducer. The simulation results demonstrate
that the QNILC can improve the convergence rate and increase the tracking accuracy than the current offline
ILC. The QNILC reduces the iteration number from nine down to five to converge to the desirable index
compared with the offline ILC using gain 0.5. The new method based on the optimization algorithm can
extend to other repetitive tracking processes.

INDEX TERMS Road durability testing, iterative learning control, Broyden’s method, optimal learning gain,
the multi-axial road test rig.

I. INTRODUCTION
Within the automotive industry, service load simulation in
the laboratory is indispensable in the vehicle development
to access its durability. Usually, the lab simulation is imple-
mented with the multi-axial hydraulic test rigs [1]. The main
advantages of laboratory testing are that it cannot be limited
by the driver’s skill and traffic andweather conditions and can
reduce running time and cost with an accelerated vibration
test method [2].

It is essential to reproduce the service loads accurately to
respond to the realistic vibration environment and the state-
of-the-art technique for automotive durability testing is the
offline Iterative Learning Control (ILC) [3]. In this method,
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a linear Frequency Response Function (FRF) matrix is iden-
tified experimentally. However, the nonlinear characteristics
of the hydraulic test rig with the vehicle under test make
the approach yield tracking errors so that a high number of
iterations are unavoidable to correct it, which becomes time-
consuming and onerous for the operators and increases the
risk of specimen damage. As a consequence, it has great value
to improve the convergence rate of iteration [4].

Many researchers have worked to speed up the conver-
gence properties of iteration from different aspects. In order
to obtain a more precise FRF model, several FRF models
with the coherence functions as weights are averaged [5]
and different excitation signals are also tried to improve
the identification accuracy [6]. The simulation channels are
optimized for the inverse FRF calculation on a six-axis road
load simulator [7]. An adaptive modeling procedure based
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on the forward prediction method is developed to update the
FRF model for compensating the modeling error during the
iterations [8], but it requires the system to be weakly-coupled.
Musella U etc [9] applied the CR-Calculus to update the FRF
matrix for random vibration control.

In lieu of the usual frequency domain implementation,
Raath [10] firstly described the system with the parametric
time domain model for road simulation. De Cuyper and
Verhaegen [11] also identified an industrial seat test rig with
state space models and inverted the obtained models with
the Stable Dynamic Inversion (SDI) method. The Autore-
gressive Moving Average Model with the exogenous inputs
(ARMAX) model [12] and the Autoregressive Model with
exogenous inputs (ARX) [13]–[15] are applied to the ILC.
The Adaptive Inverse Plant Modeling (AIPM) technique is
used by Moten et al. [16] to identify the system. The NARX
model-based ILC also has been presented in several litera-
ture [17]–[20]. The parametric model can use shorter mea-
surement data to be identified, but it is laborious to choose
a reasonable order and structure for each part of the multi-
variable model [14], [15]. The parametric model based ILC
method is more suited to smaller numbers of channels [10]
to be a supplement to the classical ILC. Besides, the iteration
gains in most recent work are still chosen manually to avoid
destabilization of the iteration process, which cannot guaran-
tee the monotonic convergence.

The offline ILC scheme is augmented with a real-
time H∞ feedback proposed by De Cuyper [21] and
De Cuyper et al. [22] or with modified internal model con-
troller developed by Tang [23] to promote the convergence
rate. But the design of extra controllers is burdensome for
every component under test especially for the multi-axis
testing.

The NormOptimal ILC (NOILC) [24] as well as Parameter
Optimal ILC (POILC) [25] have been proposed. In addition,
the ILC can be combined with the Newton method [26],
Quasi-Newton method [27]. But the above-mentioned meth-
ods are not suitable for the long duration testing because they
are deduced in the time domain and input and output signal
vectors are usually super-vectors [28].

All above efforts have facilitated the development of drive
file generation. It is still challenging to pursue the more
suitable approach for multi-axis road simulation testing. The
CGILC method has been studied by wang et al. [29]. This
method converges very fast at the first iteration steps, but the
convergence rate suffers from the couplings more severely.
The Quasi-Newton (QN) method is usual to solve nonlinear
optimization problems [30]. The optimization over complex
space has been studied and applied in engineering such as
communications [31]. In this work, the method embedding
the QN method over complex space into the conventional
offline ILC (QNILC) is studied for durability testing.

This paper is organized as follows. Section 2 describes the
experimental multi-axis test rig. Section 3 summarizes the
classical offline ILCmethod in automotive industry. Section 4
presents optimization theory over complex space and the

FIGURE 1. Quarter car suspension test rig.

theory of QNILC and proves the convergence of this method
to be monotonic. Section 5 is devoted to verifying the perfor-
mance of the QNILC and discussing the simulation results.
Finally, the conclusions of the paper are given in Section 6.

In the following part, the vectors are denotedwith the lower
case bold letters (e.g. u) andmatrices with the upper case bold
letters (e.g. G). In section 3 and 4 the variables all depend on
the angular frequency ω [rad/s] without specification.

II. EXPERIMENTAL MULTI-AXIAL SUSPENSION TEST RIG
The layout of one corner of the MTS 329 spindle-coupled
test rig where a front suspension is mounted can be seen
in Figure 1. This suspension test rig allows the simulation of
the forces and moments, hence six degrees of freedom at each
spindle [21].

The suspension test rig is typically a Multiple-Input
Multiple-Output (MIMO) system with parameter uncertain-
ties, which come from the mechanical coupling, non-linear
hydraulic valve displacement, dynamic loading change and
the variance of supply oil pressure [2]. The nonlinearities of
suspension reside in the damper, bushings and bump-stop.

In Figure 2, a McPherson suspension is mounted on the
fixture and the hydraulic test rig is controlled by the PID
controller [21]. In practice, the PID controller is usual in
the vehicle durability testing [6], [14]. Due to the frequent
replacement of specimen in the durability testing, the PID
controller is more suitable and easy to tune. With the data
acquired from this system, the simulation model is estab-
lished to replace the real physical test rig. The proposed
method can be validated through this approximate model and
moreover, the commercial suspension can be free from being
damaged unexpectedly.
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FIGURE 2. The servo-hydraulic system with the PID controller.

FIGURE 3. The classical off-line iteration.

III. CLASSICAL OFFLINE ITERATION LEARNING CONTROL
The classical offline ILC exists in the commercial software,
such as RPC (Remote Parameter Control) of MTS Corpora-
tion and TWR (Time Waveform Replication) of Siemens [1].
All these systems use the same fundamental mathematical
approach summarized in following part.

In Fig. 3, G ∈ CM×N represents the actual closed-loop
system, which can be expressed with the identified system
model Ĝ and the difference1G between the estimated model
and the actual system.

The targets, the measured responses and the drives
are denoted with r(t) = {r1(t), . . . , rN (t)}T , y(t) =
{y1(t), . . . , yM (t)}T and u(t) = {u1(t), . . . , uN (t)}T , respec-
tively. The spectral analysis uses the Discrete Fourier Trans-
form of these signals.

The system shown in Figure 2 can be given by

y = Gu = Ĝ(I +1G)u (1)

where u ∈ CN×1 and y ∈ CM×1 are spectra of drive signals
and measured responses, respectively.

Figure 3 illustrates the detailed classical ILC approach. It is
composed of two main aspects: System Identification and
Target Simulation [3]. Firstly, the H1 method is applied to
calculate the FRF matrix Ĝ.
Taking the inverse of the FRFmatrix Ĝ based on the Singu-

lar Value Decomposition (SVD), the mechanical impedance
matrix is obtained

Ẑ = Ĝ
+

(2)

where the superscript + presents the Moore-Penrose pseudo-
inverse.

In the second phase, the drives are optimized with the
impedance matrix iteratively according to

uk+1=uk+αk Ĝ
+
(r−yk ) = uk + αk Ẑek k = 0, 1, 2, 3 · · ·

(3)

where αk is thekth learning gain, satisfying 0 ≤ αk ≤ 1
In industrial practice, the test rig with the suspension under

test behaves strongly non-linear, causing significant model-
ing errors [1]. In this case, a conservative small learning gain
should be adopted to keep convergence but requires more
iterations. In practice, the gain is generally chosen manually
with the iterations.

IV. THE OFFLINE ILC STRATEGY WITH QUASI-NEWTON
OPTIMIZATION ALGORITHM
A. THE OPTIMIZATION PRINCIPLE OVER THE COMPLEX
SPACE
The iterative control problem can be seen as an optimization
problem, i.e. to find the minimum of a function [32].

The gradient-based approach over the complex space has

been proposed [33]. Given z ∈ CN×1, then definez̄
[
z
z∗

]
. The

complex conjugate, the complex conjugate transpose as well
as the transpose are denoted with the superscript ·∗, ·Hand
·
T , respectively. A real scalar-valued function about z̄ can be
expressed as [33]

f (z̄)f (z, z∗),C2N
→ R (4)

The second-order Taylor expansion of f (z̄) yields [33]

f (z̄+1z̄) = f (z̄)+1z̄T
∂f (z̄)
∂ z̄
+

1
2
1z̄H

∂2f (z̄)

∂ z̄∗∂ z̄T
1z̄ (5)

The complex gradient can be given by [33]

∂f (z̄+1z̄)
∂1z̄∗

=
∂f (z̄)
∂ z̄∗
+
∂2f (z̄)

∂ z̄∗∂ z̄T
1z̄ = ∇f (z̄)+∇2f (z̄)1z̄

(6)

where ∇f (z̄) is the gradient vector and ∇2f (z̄) is the Hessian
matrix.

Finding the minimum of Equation (4) leads the Equa-
tion (6) to be 0. So expanding the Equation (6), the following
relation should be satisfied [34]

∂2f (z̄)
∂z∗∂zT

(
∂2f (z̄)
∂z∂zT

)∗
∂2f (z̄)
∂z∂zT

∂2f (z̄)
∂z∂zH


[
1z
1z∗

]
=

−∂f (z̄)∂z∗

−
∂f (z̄)
∂z

 (7)

Assuming ∂2f (z̄)
∂z∂zT = 0, then 1z can be derived

1z = −
(
∂2f (z̄)
∂z∗∂zT

)−1
∂f (z̄)
∂z∗

(8)
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When the drive vectors reach the optimum, the tracking error
e will be zero. If ∂

2f (z̄)
∂z∂zT =

(
∂2f (z̄)
∂z∂zT

)∗
= 0, the invertibility of

∂2f (z̄)
∂z∗∂zT is a necessary and sufficient condition for a solution z̄
to exist [35]. Also, the assumption can improve the numerical
robustness of the Newton algorithm and provide a substantial
simplification [35].

The Newton’s method leads to the following iteration

zk+1 = zk +1zk = zk −

(
∂2f (z̄k )
∂z∗k∂z

T
k

)−1
∂f (z̄k )
∂z∗k

(9)

B. THE ILC BASED ON QUASI-NEWTON ALGORITHM
In this section, the optimization approach over the complex
space above is applied to the solution of the optimum drive
signal for the road durability test.

The drive u is determined by minimizing the following
real-valued function

min0(ū)0
(
u,u∗

)
= ‖e‖2 = (r− Gu)H (r − Gu) ,

C2N
→ R (10)

where ‖·‖ represents the Euclidean vector norm and ‖v‖ =
√
〈v, v〉 =

√
vHv, v ∈ CN×1.

Assume that the system is independent of the drive signal
and the complex conjugate gradient vectoris given by

∇0 =
∂0 (ū)
∂u∗

= −GH (r− Gu) = −GH (r− y) = −GHe

(11)

The complex Hessian matrix [36] can be written as

H =
∂20 (ū)
∂u∗∂uT

= GHG (12)

where H is a Hermitian positive definite matrix.
According to Equation (8), the search direction dk is gen-

erated by

dk = −H−1k ∇0k =
(
GHG

)−1
GHek (13)

In practice, the physical system model G cannot be
acquired exactly so the experimentally identified FRF matrix
Ĝ can substitute for it. Based on Equation (9), the drive can
be updated

uk+1=uk+αkdk=uk+αk
(
Ĝ
H
Ĝ
)−1

Ĝ
H
ek = uk + αk Ẑek

(14)

It is obvious that the classical offline ILC method is a
particular example of optimization problem.

If the modeling errors can be reduced, the ILC procedure
can be made more robust, i.e. it is more likely to increase
the convergence rate. But re-identifying the FRF matrix after
each iteration is cumbersome. On the real test rig, some
attempts [6], [37] have been made to improve the ILC con-
vergence properties by updating the FRF matrix. In practice,
unknown disturbances andmodeling errors prevent the ILC to
be successful [37]. In this work, the impedance matrix will be

updated iteratively with the Broyden’s method in the Quasi-
Newton algorithm to correct the errors that remain.

Apply the Broyden’s method to update the inverse Hessian
matrix, which is expressed as [38], [39]

H−1k+1 = H−1k +

(
sk −H−1k gk

)
sHk〈

H−1k gk , sk
〉 H−1k (15)

where sk and gkdenote the variation of the drive signal and
the gradient, respectively.

sk = uk − uk−1 = 1uk (16)

gk = ∇0k −∇0k−1 = −G
H (r− yk )+ G

H (r− yk−1)

= GH (yk − yk−1)

= GH1yk (17)

The impedance matrix is calculated with the Moore-
Penrose pseudo-inverse and the approximate inverse Hessian
matrix can be defined as

H−1 = Z
(
GH

)−1
(18)

Substitute Equation (18) into the Equation (15),
the impedance matrix can be updated as

Ẑk+1 =

I +
(
sk − Ẑk1yk

)
sHk〈

Ẑk1yk , sk
〉

 Ẑk (19)

To guarantee global convergence, a line search can be
conducted to attain an optimal iteration gain, where the merit
function about αk is

min
α∈C

8(ᾱk) = 8
(
αk , α

∗
k
)
= ‖r− G (uk + αkdk)‖2 (20)

If d8
/
dα∗ = 0, then yields the learning gain

αk =
(Gdk)H ek
(Gdk)H Gdk

=
〈Gdk , ek 〉
〈Gdk ,Gdk 〉

(21)

Still, the exact value of αk cannot be obtained owing to
unknown physical model G. The learning gain can be alter-
natively estimated by inserting an extra loop [40].

The concrete calculation procedure of the optimal learning
gain is illustrated in detail in the following.

ûk+1 = uk + λdk (22)

where λ is the step size of estimating loop.
Multiplying two sides of Equation (22) by G yields

Gûk+1 = Guk + λGdk (23)

ŷk+1 = yk + λGdk (24)

The increment between the two consecutive responses can
be expressed as

Gdk =
1
λ

(
ŷk+1 − yk

)
=

1
λ
êk (25)
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FIGURE 4. The flow chart of QNILC.

Substituting Equation (25) into Equation (21), the learning
gain can be reformulated as

αk = λ

〈
êk , ek

〉〈
êk , êk

〉 (26)

The overall QNILC iteration process is shown in Figure 4.

C. MONOTONIC CONVERGENCE ANALYSIS
The monotonic convergence of the QNILC with optimal
learning gain is analyzed as follows:
Theorem: Define {e0, e1, · · · , ek+1, · · · } as the tracking

error sequence with QNILC method, which satisfies

‖ek+1‖2 ≤ ‖ek‖2 (27)

Proof: The relation between ek andek+1 is

ek+1 = r− Guk+1
= r− G(uk + αkdk )

= r− Guk − αkGdk
= ek − αkGdk (28)

‖ek+1‖2 − ‖ek‖2 = −αk 〈ek ,Gdk 〉 − α∗k 〈Gdk , ek 〉

+α∗kαk 〈Gdk ,Gdk 〉

= −
〈Gdk , ek 〉 〈ek ,Gdk 〉
〈Gdk ,Gdk 〉

= −

∥∥eHk (Gdk)∥∥2
‖Gdk‖2

= −

∥∥eHk êk∥∥2∥∥êk∥∥2 ≤ 0 (29)

It is easy to conclude that the tracking error with the opti-
mal iteration learning gain can converge monotonically. It is
obviously irrelevant to the step size λ of estimating phase.
To guarantee the convergence of estimating loop, the step
size λ can be selected according to the tracking error. The
update of the impedancematrix can reduce themodeling error
gradually, which means that the step size λ can be set as a
bigger value. But in this work, the estimating loop is seen as
the auxiliary tool to attain the optimal learning gain, which
is not considered as normal iteration step. Therefore, the step
size λ = 0.1 is fixed in this work.

V. SIMULATION RESULTS AND DISCUSSION
To demonstrate the feasibility of the proposed algorithm,
a comparable investigation is accomplished between the pro-
posed QNILC algorithm and the classical ILC in automotive
industry. In this section the simulation studies are performed
with the a MIMO plant model with un-modeled dynam-
ics. As shown in Figure 1, the front suspension test sys-
tem uses force control for the lateral and longitudinal axes
and displacement control for the vertical axis. For briefness,
the vertical, lateral and longitudinal spindle forces are taken
as responses of our interest, which brings forth a 3×3 sys-
tem. In the system identification phase, the H1 method is
performed with 0 ∼ 50 Hz white-pink noise signals, where
white noise for the low frequency range and pink noise for
the higher range [3].

Figure 5 compares the experimental FRF matrix Ĝ (blue
solid) with the parametric model G̃ (red dotted), which
is derived by Recursive Least Squares (RELS) algorithm.
In Figure 5, the columns signify inputs and the rows
responses. Figure 5 (a) and (b) show the magnitude and phase
frequency characteristics, respectively. It can be observed that
the amplitude of the off-diagonal elements are lower than
the diagonal elements, i.e. the cross-couplings are relatively
weak.

The elements of parameter model G̃ are given by

G̃11=
4.336e−5z3+5.515e− 3z2−1.021e−2z+5.121e−3
z5−4.372z4+7.908z3−7.392z2 + 3.575z− 0.7183

(30)

G̃21 =
−0.00305z3+0.009423z2 − 0.008697z+ 0.002325

z4 − 3.571z3+4.837z2 − 2.952z+0.6863
(31)

G̃31 =
−0.04819z3 + 0.1155z2 − 0.1235z+ 0.05019

z5−1.345z4+0.6594z3+0.9621z2−0.223z− 0.4349
(32)
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FIGURE 5. Experimental FRFs and parametric models of the multi-axial setup (a) magnitude characteristics
(b) phase characteristics.
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FIGURE 6. Target force signals for three different channels.

G̃12=
−0.0003999z3−0.001462z2−0.007173z−0.005307
z5−2.022z4+0.448z3+1.567z2 − 1.327z+ 0.3343

(33)

G̃22=
−1.236e−2z3+4.142e−2z2−2.642e−2z−2.347e−3
z5−2.361z4+1.065z3+1.456z2 − 1.633z− 0.4731

(34)

G̃32 =
−0.01252z3 − 0.0125z2+0.03551z− 0.01942

z5−1.703z4+1.353z3+0.832z2 − 0.7277z− 0.08502
(35)

G̃13 =
−3469z2 + 7010z− 3541

z4 − 3.519z3+4.849z2 − 3.094 z+0.7657
(36)

G̃23 =
7925z2 − 27540z+ 19530

z4 − 1.618z3 − 0.1095z2+1.635z− 0.8681
(37)

G̃33 =
2889z2 + 16400z− 14370

z4 − 3.061z3 + 3.902z2 − 2.378z+ 0.6038
(38)

In order not to jeopardize the specimen, the performance
of the QNILC will be validated with the MIMO param-
eter model G̃ to replace the real physical plant G. The
FRF matrix G̃ and Ĝ don’t exactly coincide in all region
in Figure 5, where the deviation can be seen as the modeling
error.

FIGURE 7. Relative RMS error comparison of QNILC and classical ILC.

TABLE 1. The iterative histories of QNILC and Classical ILC 0.5.

As shown in Figure 6, a total length of 21s target sig-
nals with high amplitude are truncated from the road test
signals, which is real-life spindle forces acquired from
WFT.

The initial drive signals are created by multiplying the
inverse of the FRF matrix with the target signals shown
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FIGURE 8. Response comparison of QNILC and classical ILC (after five
iterations).

in Figure 4. But for safety reason, setting the first excitation
level as 10% of the initial drive signal is considered in prac-
tice.

The relative Root Mean Square (RMS) error will be used
as performance metrics to assess the convergence rate, which
is

εRMSi =

√
M∑
k=0

[ri(k)−yi(k)]2

M√
M∑
k=0

r2i (k)
M

× 100% (39)

where i is the channel number and M is the data length.
According to the relative RMS error comparison

in Figure 7, it is observed that the iteration gain of the classical
ILC becomes larger, the faster the convergence rate is. And
a divergence occurs in the lateral channel if the gain in
classical ILC reaches 0.75 in Figure 7 (b), which results by
the modeling error and cross-coupling. It also can be seen that
the proposed QNILC not only can guarantee the convergence

FIGURE 9. Tracking error comparison of QNILC and classical ILC (after five
iterations).

of three channels but also converge faster than the classical
ILC.

The values of relative RMS error of QNILC and Classical
ILC with a 0.5 gain are listed in the Table I and the con-
vergence threshold is set 1% for three channels. Obviously,
the QNILC can reach a comparable accuracy with less iter-
ations. The QNILC needs only five iterations to converge to
the desirable index so it requires less time to obtain the drive
file.

Consider that the classical ILC has a fixed learning gain
of 0.5. Figure 8 compares the responses of two methods after
5 iterations with target time waveforms. It can be observed
that the curve with QNILC can match the target signal better,
especially at the peak force point. The corresponding error
results are displayed in Figure 9. It is evident that the errors
with the QNILC are much smaller than those with the classi-
cal ILC during the same iterations.

The Power Spectral Density (PSD) also provides useful
insights, as shown in Figure 10. The energy is concentrated
on the frequency band 0∼15Hz. Over the entire frequency
range, the PSD with QNILC matches the target PSD. Gen-
erally, the peak PSD has a more influence on the damage
ratio of the specimen. It can be seen that the PSD with the
QNILC method is consistent with the target at the peak value
of three channels. As a consequence, the QNILC allows a
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FIGURE 10. Response power spectra comparison of QNILC and classical
ILC (after five iterations).

more accurate replication of the target signals with the same
iterations.

VI. CONCLUSION
A QNILC scheme with optimal iteration gain is proposed
to accelerate the convergence rate of iteration procedure for
generating the drive file in automotive durability testing. The
update of the impedance matrix with Broyden’s method can
make the iteration more robust. An optimal iteration gain can
be derived from the auxiliary estimating loop readily. With
this optimal iteration gain, the QNILC can keep the itera-
tion converging monotonically. The QNILC can be imple-
mented more easily without manual gain adjustment. The
proposed approach towards MIMO system has been investi-
gated through simulation. Simulation results demonstrate that
the QNILC can reach a comparable tracking accuracy with
less iterations. Compared to recent parametric model based

ILC, the proposedmethod can easily extend to larger numbers
of channels (e.g. the full-vehicle durability testing) to replace
the classical ILC. The physical multi-axial road test rig is
under construction and the practical application of QNILC
will be pursued.
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