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Novel-view synthesis from "clean" images has achieved high fidelity through
the utilization of Neural Radiance Fields (NeRF). The recent adoption of 3D
Gaussian splatting (3DGS) leverages the advantage of explicit point-based
representation to significantly improve the rendering speed and quality.
However, swift egomotion in real-world robotic tasks induces motion blurs
in input images, leading to inaccuracies and artifacts in reconstructed struc-
ture. To alleviate this issue, we propose Event3DGS, the first methodology
that learns Gaussian Splatting from event-camera data. By exploiting the
high temporal resolution of event cameras and explicit point-based rep-
resentation, Event3DGS can reconstruct high-fidelity 3D structures solely
from the event streams of fast-moving cameras. Then, our negative sam-
pling and progressive training approaches allow for better reconstruction
quality and consistency. To further optimize the appearance fidelity of the
rendered scene, we explicitly model the motion blur formation process into
a differentiable rasterizer and jointly use a limited number of blurred RGB
images captured under high-speed egomotion alongside the corresponding
event stream for appearance refinement. Experimental evaluations on multi-
ple datasets showcase that Event3DGS achieves superior rendering quality
and significantly improve the rendering speed compared with existing ap-
proaches.
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1 INTRODUCTION
Reconstructing a precise geometric and visually realistic 3D scene
representation from a collection of 2D images taken from differ-
ent viewpoints has long been a persistent challenge in the fields of
computer vision and computer graphics. In recent developments, sig-
nificant strides have been made in advancing this endeavor through
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two notable contributions: Neural Radiance Fields (NeRF) [Milden-
hall et al. 2020] and 3D Gaussian Splatting (3DGS) [Kerbl et al.
2023]. Both categories of methods represent scenes as differentiable,
unstructured 3D representations, enabling the rendering of new
views that frequently exhibit visual fidelity comparable to evalua-
tion images. However, a major prerequisite to achieve a high-quality
radiance field based on them is that they generally require a ap-
propriate distribution of viewpoints and high-quality sharp static
input images, which are not always met in real-world robotic tasks.
Within the practical implementation of robotic systems, rapid ego-
motion emerges as a prevalent phenomenon, notably observed in
contexts characterized by high-velocity locomotion or traversal of
dynamic environments. The requisite speed and agility integral to
proficient robot locomotion invariably engender pronounced in-
stances of egomotion, thereby imparting considerable challenges
to diverse computational undertakings. Of particular significance,
the efficacy of radiance field rendering is substantially influenced
by the manifestations of swift egomotion, the dynamics of rapid
egomotion can induce motion blur artifacts within rendered images,
thereby compromising visual fidelity and realism, hindering the ra-
diance field rendering methods’ (such as NeRF and 3DGS) practical
applicability in real-world scenes. Although recent studies [Ma et al.
2022; Oh et al. 2024; Seiskari et al. 2024; Wang et al. 2023; Wenbo
and Ligang 2024; Zhao et al. 2024] have demonstrated promising ad-
vancements in reconstructing radiance fields from motion-blurred
images by acquiring the capability to infer camera motion during
the exposure period, they are inherently constrained by the presence
of motion ambiguities and the inevitable loss of sharp geometry
details, which remain unrecoverable solely from the blurry image
data.
While NeRFs trained with clean RGB images achieve promis-

ing performance on 3D reconstruction and novel-view synthesis,
their performance are strongly degraded with blurry input. The
event camera, a novel sensing paradigm, offers several advantages
over conventional frame-based cameras, particularly in scenarios
characterized by fast egomotion. Diverging from conventional cam-
eras, event cameras asynchronously record pixel-level luminance
alterations, facilitating exceptional temporal resolution, minimal
motion blur, high dynamic range, and negligible latency and data
bandwidth. Such attributes empower event cameras to furnish a
continuous flow of pixel-level intensity variations and precise and
sharp scene geometry information, even in fast egomotion scenario
[Hu et al. 2021]. Within radiance field rendering, the inherent ca-
pability of event cameras to precisely capture scene information
at high temporal resolutions seamlessly aligns with the demands
posed by radiance field rendering in fast egomotion scenarios. Em-
ploying a continuous event stream, characterized by sharp scene
geometry, as a supervisory signal for radiance field rendering, holds
promise in facilitating the generation of coherent and artifact-free
renderings amidst rapid egomotion situations. As event cameras
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exhibit strong capacity in capturing fast motion with low latency
and data bandwidth, several works utilize event streams for training
NeRFs for higher reconstruction quality. EventNeRF[Rudnev et al.
2023], EV-NeRF[Hwang et al. 2023a], and E-NeRF[Klenk et al. 2023a]
extended the idea of NeRF onto the event camera by exploring static,
quasi-dynamic, and moving scenes separately. These three papers
propose nuanced adaptations to the NeRF architecture, tailored
specifically to accommodate the sparse and asynchronous nature in-
herent in EC data streams. Such adaptations encompass techniques
such as event encoding, temporal integration, and the formulation
of bespoke loss functions. Divergences among the approaches man-
ifest in several dimensions. For instance, EventNeRF and Ev-NeRF
operationalize temporal integration to frame-like representations,
while E-NeRF[Klenk et al. 2023a] opt for direct integration of event
data. Moreover, methodological variances are observed in the treat-
ment of event polarity and the architectural configurations, with
distinctions particularly pronounced in the encoding networks uti-
lized. The thematic focal points of the respective studies diverge as
well, with EventNeRF[Rudnev et al. 2023]emphasizing static scene
reconstruction, Ev-NeRF[Hwang et al. 2023a] prioritizing real-time
rendering and dynamic scene comprehension, and E-NeRF[Klenk
et al. 2023a] encompassing both static and dynamic scene recon-
struction while emphasizing memory efficiency.
We’re excited to implement this similar idea to the domain of a

new 3D scene reconstruction method 3D Gaussian Splatting. The
emerging 3D Gaussian Splatting[Kerbl et al. 2023] (3D-GS) signifi-
cantly improves the rendering speed to a real-time level by explicitly
modeling the scene as 3DGaussians. During inference, 3DGaussians
are rendered into camera views via splatting-based rasterization.

In this work, we propose Event3DGS, the first methodology that
leverages the advantages of gaussian splatting to facilitate high-
fidelity 3D reconstruction and real time rendering based solely on
event data. Event3DGS is trained from events in a self-supervised
manner by comparing the approximate difference between views
computed by accumulate the observed events polarities against the
difference between the rendering views. Our findings demonstrate
the feasibility of rendering the accurate geometry of the scene solely
from an event stream input by 3DGS. Notably, in order to further
optimize the appearance fidelity of the rendered scene, we explic-
itly model the motion blur formation process into a differentiable
rasterizer, and jointly use a limited number of blurred RGB images
captured under high-speed egomotion and the event stream within
the corresponding exposure time as supervision signals for appear-
ance refinement. Our results show that our optimization strategy
makes targeted use of information in event and blurred images,
which makes our approach facilitates the explicit 3D representation
recovery of scenes during rapid egomotion. Through the fusion
of events and sparsely collected blur images, Event3DGS enables
comparable and often more visually appealing rendering quality
than prevailing pipeline approaches, while achieving faster ren-
dering speed at lower data bandwidth and memory footprint. Our
contributions can be summarized as follows:

(1) To the best of our knowledge, this is the first work to produce
explicit 3D Gaussian splatting scene representations solely
from event data.

(2) With a methodological approach incorporating negative sam-
pling and differential supervision of event data, specifically
tailored to accommodate 3D Gaussian Splatting (3DGS), we
achieves accurate 3D geometry reconstruction and real-time
rendering functionalities.

(3) To enhance appearance fidelity in the rendered scene, we inte-
grate the motion blur formation process into a differentiable
rasterizer. Through use a limited number of blurred RGB
images and the corresponding event stream as joint supervi-
sion, Event3DGS enables optional appearance refinement to
further get more visually appealing rendering quality.

2 RELATED WORK

2.1 Novel View Synthesis and 3D Gaussian Splatting
In computer graphics and computer vision, dense photorealistic
rendering of a scene in a 3D-consistent manner and novel view
synthesis is a critical task involving generating images of a scene
from viewpoints that were not observed during data acquisition.
This process finds applications in various domains, including virtual
reality, robotics, autonomous driving, and augmented reality. While
effective, traditional methods such as ray casting and ray march-
ing often suffer from computational inefficiency, particularly when
confronted with large-scale datasets. Recent advancements in novel
view synthesis have witnessed the emergence of Neural Radiance
Fields (NeRF) [Mildenhall et al. 2020], a groundbreaking technique
introduced by Mildenhall et al. NeRF [Mildenhall et al. 2020] rep-
resents a neural network-based approach to scene representation
and rendering, wherein a volumetric scene is modeled as a continu-
ous function that maps 3D spatial coordinates to radiance values.
By leveraging neural networks to approximate this function, NeRF
[Mildenhall et al. 2020] achieves photorealistic rendering results
with high fidelity and fine details, surpassing traditional rendering
techniques in realism and accuracy.

However, while NeRF [Mildenhall et al. 2020] has demonstrated
remarkable capabilities in synthesizing novel views of scenes, it
poses challenges in terms of computational complexity and scalabil-
ity, particularly for large-scale scenes with intricate geometry and
texture details. Moreover, NeRF [Mildenhall et al. 2020] requires
substantial amounts of training data and computational resources,
limiting its applicability in real-time or interactive scenarios. In
light of these challenges, recent research has explored alternative
approaches to scene representation and rendering that offer a bal-
ance between efficiency and visual fidelity. Kerbl et al. introduced
3D Gaussian splatting (3DGS) [Kerbl et al. 2023], a technique with
roots in computer graphics dating back to the seminal work of
Westover [Westover 1991]. 3DGS involves projecting volumetric
data onto a 2D image plane using Gaussian distributions to emulate
smooth transitions and preserve essential details. While tradition-
ally used in volume rendering, 3DGS has garnered renewed interest
in the context of scene representation and rendering, particularly
as a complement to NeRF-based methods. Unlike NeRF [Mildenhall
et al. 2020], which operates on implicit 3D representations, Gauss-
ian splatting offers an explicit representation of the scene, enabling
efficient rendering and synthesis of novel views without the need
for complex neural network architectures or extensive training data.
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3DGS emerges as a promising alternative, offering a principled ap-
proach to project volumetric data onto a 2D image plane. Central
to its methodology is the projection of the learnable 3D Gaussian
onto a 2D image plane, facilitated by the application of Gaussian
distributions to emulate smooth transitions and preserve salient
details. This process entails the transformation of voxel points onto
the image plane, the generation of Gaussian functions centered at
these points, and the cumulative aggregation of their contributions
to yield the final rendered image.

2.2 Event-based 3D Reconstruction and Radiance Field
Rendering

Event-based and event-aided 3D reconstruction [Baudron et al. 2020;
Chamorro et al. 2022; Muglikar et al. 2021; Wang et al. 2022; Xiao
et al. 2022; Zhu et al. 2019] and radiance field rendering [Bhat-
tacharya et al. 2024; Cannici and Scaramuzza 2024; Hwang et al.
2023b; Ma et al. 2023; Qi et al. 2023; Rudnev et al. 2023] represent a
paradigm shift in computer vision and graphics, revolutionizing the
perception and rendering of dynamic scenes with high temporal
resolution and accuracy. Traditional frame-based imaging systems
capture scenes at fixed intervals, resulting in motion blur and la-
tency issues, particularly in fast-moving scenarios. Event-based
sensors, inspired by biological vision systems, detect changes in
luminance (events) asynchronously and with microsecond precision
at the pixel level. This asynchronous operation enables event-based
systems to capture fast-moving objects with minimal motion blur
and latency, making them ideal for applications requiring real-time
perception and interaction, such as robotics, augmented reality, and
autonomous driving.
Event-based 3D reconstruction leverages the spatiotemporal in-

formation provided by event data to reconstruct the 3D geometry
and appearance of dynamic scenes with unprecedented speed and
accuracy. By exploiting the temporal resolution of event data, these
techniques enable the reconstruction of scenes with fine tempo-
ral detail, surpassing the capabilities of traditional frame-based
methods. Event-based sensors offer advantages in low-light con-
ditions and high dynamic range environments, further enhancing
their applicability across various domains. Moreover, Event-aided
approaches combine event data with traditional frame-based imag-
ing to enhance the robustness and accuracy of 3D reconstruction
and radiance field rendering, particularly in challenging scenarios
with dynamic lighting conditions or occlusions. Weikersdorfer et al.
[Weikersdorfer et al. 2013] demonstrated event-based stereo recon-
struction, showcasing the feasibility of reconstructing 3D scenes
from event data captured by stereo event cameras. Advancements in
event-based radiance field rendering have expanded the capabilities
of event-based systems beyond reconstruction to include denser and
visually captivating rendering of real world scenes. [Hwang et al.
2023b] proposed an event-based neural radiance field (Ev-NeRF)
framework that capitalizes on the multi-view consistency inherent
in NeRF, offering a robust self-supervision signal for mitigating erro-
neous measurements and extracting coherent underlying structures
from noisy raw event data. This methodology yields a cohesive 3D
structure capable of delivering high-fidelity observations. Rudnev et

al. [Rudnev et al. 2023] introduced an approach (EventNeRF) for 3D-
consistent, dense and photorealistic novel view synthesis using just
a single colour event stream as input. It was trained exclusively in a
self-supervised fashion using event data while maintaining the orig-
inal resolution of the color event channels. Their evaluations shows
that their approach not only provides denser and visually captivat-
ing renderings compared to existing methods but also demonstrates
robustness in demanding scenarios characterized by rapid motion
and low-light conditions.

Furthermore, some existing works [Cannici and Scaramuzza 2024;
Qi et al. 2023] enhance pipeline performance in fast motion and low-
light scenes by integrating event streams into RGB-based radiative
field rendering pipeline frameworks (NeRF or 3DGS) for deblurring.
For example, Qi et al. [Qi et al. 2023] introduced a novel approach
termed Event-Enhanced NeRF (E2NeRF), integrating event streams
into the learning framework of neural volumetric representation.
Their methodology incorporates a blur rendering loss and an event
rendering loss, aimed at guiding the network by modeling real blur
processes and event generation processes, respectively. Their eval-
uation substantiates that their methodology effectively leverages
the intrinsic association between events and images, yielding supe-
rior quality compared to prior image-based or event-based NeRF
approaches in complex and low-light scenes. Cannici et al. [Cannici
and Scaramuzza 2024] achieve surpassing existing deblurring NeRFs
by explicitly modeling the blur formation process and utilizing event
double integrals as additional model-based priors.
While the mentioned approaches successfully incorporates the

NeRF formulation with raw event data, resulting in 3D rendering of
exceptional visual fidelity, NeRF’s algorithmic framework demands
substantial computational resources, rendering it less viable for
real-time applications. This limitation poses a challenge for light-
weight and real-time efficient event camera systems. Furthermore,
the implicit representation of the model makes it difficult to edit
and integrate with traditional 3D graphics processing pipelines.

However, our proposed Event3DGS pipeline integrates 3D Gauss-
ian Splatting (3DGS) [Kerbl et al. 2023] with real-time rendering
capabilities and asynchronous event stream, providing an efficient,
deterministic and interpretable depiction of scene geometry, and
easy-to-edit high-fidelity 3D rendering capability. It allows seamless
integration with established graphics pipelines and enabling stream-
lined optimization processes. In addition, Event3DGS is extremely
robust to fast motion, low light, and high dynamic range scenarios
where it is difficult for RGB cameras to obtain high-quality images.
By fusing the hardware advantages of the event camera with the
efficient rendering capabilities of 3DGS, our pipeline provides real-
time 3D rendering of a wider range of real-world scenes with low
latency, low data bandwidth, ultra-low power consumption and
allows acquisition devices to perform 3D mapping work at a higher
operating speed.

3 METHODS

3.1 Preliminary
3DGaussian Splatting (3DGS) [Kerbl et al. 2023] explicitly represents
a scene with a group of anisotropic 3D Gaussians (ellipsoids). Each
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Gausssian is defined by a full 3D covariance matrix Σ with its center
point (mean) 𝜇:

𝐺 (𝑥) = 𝑒−
1
2𝑥

𝑇 Σ−1𝑥 (1)

To preserve the valid positive semi-definite property during opti-
mization, the covariance matrix is decomposed into Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 ,
where 𝑆 ∈ R⊯+ represents scaling factors and 𝑅 ∈ 𝑆𝐸 (3) is the
rotation matrix. Each Gaussian is also described with an opacity
factor𝜎 ∈ R , and spherical harmonics C ∈ R𝑘 for modeling view-
dependent effects.
During optimization, 3D Gaussian splatting adaptively control

the density of Gaussians via densification in areas with large view-
space positional gradients and pruning points with low opacity.
For rendering, the 3D Gaussians 𝐺 (𝑥) are first projected onto the
2D imaging plane 𝐺 ′ (𝑥), then a tile-based rasterizer is proposed to
enable fast sorting and 𝛼-blending. The color of pixel 𝑢 is calculated
via blending N ordered overlapping points:

𝐶 (𝑢) =
𝑁∑︁
𝑖=1

𝑐𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ) (2)

where 𝑐𝑖 = 𝑓 (C𝑖 ) is the color modeled via spherical harmonics,
and 𝛼𝑖 = 𝜎𝑖𝐺

′
𝑖
(𝑢) is the multiplication of opacity and the trans-

formed 2D Gaussian.
Event cameras record a continuous stream of event tuples {𝑒𝑘 =

(𝑡𝑘 , 𝑢𝑘 , 𝑝𝑘 )}𝑁𝑘=1, where 𝑡 is the timestamp, 𝑢𝑘 = (𝑥𝑘 , 𝑦𝑘 ) is the pixel
coordinates and 𝑝𝑘 ∈ {+1,−1} is the polarity of each events.

3.2 Neutralization Minimization using Adaptive Integral
Bins

In event-based radiance field rendering pipelines, the slicing strat-
egy of the event stream affects rendering quality of the scene. This
effect is more obvious in our pipeline. Since we use polarity dur-
ing the accumulation process, it is inevitable to lose information
due to neutralization during the accumulation process. In order to
mitigate the information loss during the accumulation process, we
design a neutralization-aware event slicing strategy. Notably, some
existing works have stated that using constant short windows leads
to poor propagation of high-level illumination, and using constant
long windows often leads to poor local detail [Rudnev et al. 2023].
Our slicing strategy considers the number of events and the neu-
tralization moment to adaptively sample the length of the event
integration window. (1) perform slicing when the number of events
reaches the threshold; (2) perform slicing where neutralization oc-
curs on many pixels (set threshold manually). Our slicing strategy
not only ensures the diversity of window lengths but also minimizes
the loss of detailed information caused by neutralization.

3.3 Parameters Separable Alternating Optimization
Event data with high temporal resolution is able to provide differ-
ential supervision signals with sharp scene structure, which allows
3D gaussian splatting (3DGS) to perform fine reconstruction of
scene structure under fast egomotion. The multi-view consistency
of 3DGS provides a powerful self-supervision signal, which enables
the learnable gaussians to continuously approximate the ground

truth of geometric structure of the scene during the optimization
process. However, time-differenced event data lacks some appear-
ance components the scene, such as the absolute value of pixel
intensity, true tone, local texture, etc. Therefore, 3D scene represen-
tations optimized only through event data often suffer from tone
shifts and lack texture details.
Although RGB images with severe motion blur are difficult to

be directly used for radiance field training due to the degradation
of the structure of the scene, the true hue and texture information
contained in them become complementary to the event data. In
order to further improve the fidelity of the appearance and main-
tain the sharp details of the scene structure, we sparsely insert a
very small number of blur RGB images as supervision signals of
directional appearance and opacity, and design an parameters sepa-
rable alternating optimization strategy on the combined data of the
event stream and the blur RGB images. In addition, we explicitly
incorporate the formation process of motion blur distortion into the
rasterization process (see Sec. 3.4) by integrating information over
a short camera trajectory (during the exposure interval). This miti-
gates the undesirable effects of appearance degradation in blurry
images on supervision.
Separable setting of parameters in alternating optimization is

key to our method maintaining sharp structural details of the scene
while improving the fidelity of appearance components from joint
supervision of blur images and event data. We divide the learnable
parameters into two groups. The structural parameters include the
position (mean) 𝜇 and covariance matrix Σ of 3D Gaussians, and the
appearance parameters include opacity 𝛼 and spherical harmonics
(SH) coefficients. When high temporal resolution differential signals
from event data serve as supervision, we perform gradient descent
on the structural parameters of 3D Gaussians to approximate the
sharp structure of the scene, while the coarse appearance parameters
(supervised only by event data) are frozen or given an extremely
low learning rate. In contrast, when the integrated signal from the
blur RGB image is added to the supervised iteration, we only use
this signal to perform gradient descent on the refined appearance
parameters of the 3D Gaussians (which are additionally cached and
not shared with the coarse appearance parameters) to refine the
appearance components of the scene. Synchronously, the structural
parameters are optimized under the supervision of the aligned event
differential signal.
In order to ensure efficient optimization and rapid convergence

of the model, we carefully determined the timing of intervention
of alternating optimization in the overall training process. We find
that because the structural parameters of 3D Gaussians were op-
timized at a higher learning rate under the supervision of event
data in the early iterations of training, and a small amount of blur
RGB supervision signals were intermittently called during the op-
timization process. Therefore, the refined appearance parameters
do not converge quickly in the early iterations of training but con-
tinue to oscillate. Based on this observation, we allow supervision
of event data in the early iterations of training to perform gradient
descent on all parameters to increase convergence speed and avoid
redundancy. After the structural parameters initially converge (the
corresponding learning rate stabilizes at a lower value for a cer-
tain number of iterations), the blur RGB supervision signal will be
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intermittently called in subsequent iterations to perform gradient
descent on the refined appearance parameters.

3.4 Differentiable Blur-aware Rasterization
In the case of high-speed egomotion, images captured by RGB cam-
eras often contain severe motion blur, so it is difficult to provide
multi-view consistent appearance supervision for training under
the original rasterization method of 3DGS (fixed camera pose). We
aim to optimize appearance parameters of the learnable 3D Gaus-
sians using a given small amount of motion blurred inputs, which
are able to improve visual fidelity while maintaining sharp scene
structure. In the realm of physics, camera motion blur stems from
the amalgamation of irradiance induced by the movement of the
camera. According to the physical image formation, camera motion
blur is produced by the integration of irradiance during camera
movement, which can be mathematically represented as following
equation:

I𝑏𝑙𝑢𝑟 =

∫ 𝜏𝑒

𝜏𝑠

I(P𝜏 ) 𝑑𝜏 ≈ 1
𝑁

𝑁∑︁
𝑖=1

I(P𝜏𝑖 ) (3)

where I𝑏𝑙𝑢𝑟 represents blurry image, I(P𝜏 ) is latent sharp image
captured from the camera pose P𝜏 ∈ 𝑆𝐸 (3). To simplify the integral
calculation, we approximate it as a finite sum of 𝑁 irradiance I(P𝜏𝑖 ),
where 𝜏𝑖 are the midpoint timestamps of a finite number of event
integration windows (EIW) within the exposure interval (from 𝜏𝑠
to 𝜏𝑒 ).
In order to incorporate motion effects due to camera movement

during frame capture modeling into the differentiable rasterization
process of the 3DGS pipeline, we incorporate the above physical
formation process of motion blur into the rendering equation:

𝐶𝑏𝑙𝑢𝑟 (𝑥,𝑦, P 𝜏𝑠+𝜏𝑒
2

,G) = 𝑔( 1
𝑁𝐸𝐼𝑊

𝑁𝐸𝐼𝑊∑︁
𝑖=1

𝐶 (𝑥,𝑦, P𝜏𝑖 ,G)) (4)

where 𝐶𝑏𝑙𝑢𝑟 denotes the blurry color of the pixel(x,y) of output im-
age given by blur-aware volumetric rendering, G is the 3D Gaussian
model parameters, 𝑔(·) is a gamma correction function, 𝑔(𝑅,𝐺, 𝐵) =
(𝑅

1
𝛾 ,𝐺

1
𝛾 , 𝐵

1
𝛾 ) with 𝛾 = 2.2, 𝑁𝐸𝐼𝑊 represents the number of event

integration windows within the exposure interval.

3.5 Loss Function
Following [Kerbl et al. 2023], We first calculate the log illuminance
different between two timestamps 𝑡 and 𝑡0, and compute the L1 loss
with the accumulated event maps.

L𝑢 (𝑡0, 𝑡) = L1_loss (log 𝐼𝑢 (𝑡) − log 𝐼𝑢 (𝑡0), 𝐸𝑢 (𝑡0, 𝑡)) (5)
Similar to [Klenk et al. 2023b; Rudnev et al. 2023], to improve

overall reconstruction consistency and robustness, we also compute
loss on negative pixels where no events are triggered. To further
improve robustness, apply random dropout with probability 𝑝 on
the computed pixels. The total loss can be written as

L(𝑡0, 𝑡) = Dropout(
∑︁

𝐸𝑢 (𝑡0,𝑡 )≠0
𝐿𝑢 (𝑡0, 𝑡) + 𝜆

∑︁
𝐸𝑢 (𝑡0,𝑡 )=0

𝐿𝑢 (𝑡0, 𝑡), 𝑝)

(6)

4 EXPERIMENTS

4.1 Experimental Settings
Our implementation is based on 3DGS[Kerbl et al. 2023]. We train
our model on a single NVIDIA RTXA4000 GPU for 30k iterations,
which takes arounds x minutes. We set the scale of pointcloud
initialization from 2.6 to 0.2 for fit the scale of training scenes. Other
hyperparmeters and optimizers are set as default.

Synthetic Dataset. [Rudnev et al. 2023] generate seven sequences
via rendering a 360◦ rotation of camera around each 3D object with
1000 views and simulating the event streams accordingly.

4.2 Quantitative Evaluation
Synthetic Sequences. It can be seen from the Table 1 that, our

Event3DGS almost provide better performance than the competitors,
E2VID + NeRF and EventNeRF[Rudnev et al. 2023].

4.3 Qualitative Evaluation
Synthetic Sequences. Our results shows that (See Fig. 4.3 and Fig.

4.3). Event3DGS enables comparable and often more visually appeal-
ing rendering quality than prevailing pipeline approaches, while
achieving faster rendering speed at lower data bandwidth and mem-
ory footprint.

Real Sequences. Our results shows that (See Fig. 4.3). Event3DGS
enables consistent rendering quality in the real world data.

5 NERFSTUDIO IMPLEMENTATION
We leverage the Nerfstudio framework, depicted in Fig. 4, which
categorizes NeRF methods into a sequence of fundamental building
blocks. We adopt this base template and the corresponding Splat-
facto method, a Gaussian Splatting implementation in Nerfstudio, to
design our Event3DGSmethod (https://github.com/jayhsu0627/Event3DGS
).
The pipeline comprises two key components: the DataManager

and the Model. The DataManager is tasked with (1) parsing image
formats via a DataParser and (2) generating RayBundles and RayGT
objects, necessary for training and inference. RayBundle objects
encapsulate ray origins and viewing directions, while RayGT ob-
jects, required solely during training, contain ground truth (GT)
information for loss computation. For instance, GT pixel values
can supervise rendered rays using an L2 loss. These rays are subse-
quently fed into the Model’s forward pass, which queries Fields and
renders quantities as RayOutputs. Ultimately, the entire Pipeline is
supervised end-to-end with a loss function.

To avoid conflation with 3DGS [Kerbl et al. 2023] and Nerfstudio’s
"Splatfacto", [Tancik et al. 2023], we refer to our implementation
as "Esplatfacto." Akin to Nerfacto’s amalgamation of various tech-
niques, the authors of Nerfstudio posit that Splatfacto will be a blend
of different Gaussian Splatting methodologies. Consequently, we
designed our method based on this template to capitalize on its
potential impact.

5.1 Dataloader
AsNerfstudio stores its images as files and camera poses as JSON files,
we must convert the event data to the ground truth in Nerfstudio
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Table 1. Quantitative comparison (PSNR↑) on synthetic event-sequences

Methods chair drums ficus hotdog lego materials mic Average

E2VID + NeRF 24.12 19.71 24.97 24.38 20.17 22.01 23.08 22.64
EventNeRF[Rudnev et al. 2023] 30.62 27.43 31.94 30.26 25.84 24.10 31.78 28.85
Event3DGS (w/o blur images) 30.962 27.645 31.249 30.799 27.7 29.232 31.908 29.928

Fig. 1. Qualitative comparison on synthetic sequences with motion blur

format. Instead of using the ns-process-data command designed
in Nerfstudio, we programmed our data processing script as follows.
Initially, we load the line-by-line event data as four NumPy ar-

rays: timestamps, x coordinates, y coordinates, and polarity values.
Subsequently, we employ the accumulation method to obtain raw
event-based images between 𝑡0 and 𝑡 . Due to the random back-
tracking of 𝑡0 for a given 𝑡 , we store the corresponding pair in the
generated camera pose JSON so that when called during training, the
loss function can view the difference between these paired camera
poses.

𝑡0 ∼ 𝑈 [𝑡 − 𝐿𝑚𝑎𝑥 , 𝑡) (7)

Next, we apply a Bayer filter to obtain a colorized image. Akin to
[Rudnev et al. 2023], our Bayer filter 𝐹 ∈ R𝑊 ×𝐻×3, where𝑊 × 𝐻

is the image resolution, and 𝐹 consists of the following tiled 2 × 2
pattern: [[[1, 0, 0], [0, 1, 0]], [[0, 1, 0], [0, 0, 1]]] (RGGB filter).

For each camera’s pose, we load the camera-to-world poses gen-
erated by EventNeRF [Rudnev et al. 2023] in the COLMAP/OpenCV
convention. We then process s the matrix by flipping, swapping, and
inverting vertically to align with the OpenGL/Blender coordinate

system used in Nerfstudio. The final operation scales the scene to
a "NeRF-sized" scale. To process dataset, we iterate through the
event stream from beginning to end and save the colorized image
between timestamps 𝑡0 and 𝑡 to calculate its accumulated difference
accordingly.

5.2 DataManager and DataParser
The DataManager (esplatfacto_datamanager) is responsible for
turning posed images into RayBundles, which are slices of 3D space
that start at a camera origin. Within the DataManager, the Data-
Parser (esplatfacto_dataparser) first loads the input images and
camera data. Once the images are properly loaded and formatted,
the DataManager iterates through the ground truth data, generating
RayBundles and ground truth supervision.

Compared to vanilla 3DGS or NeRF, the challenge of event-based
3DGS lies in the fact that each supervision relies on both a random
previous frame and the deterministic current frame. Consequently,
we need to pass through both concurrent groups of camera poses,
denoted as cameras, and its corresponding pre_cameras. In each
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Fig. 2. Qualitative comparison on synthetic sequences with motion blur

Fig. 3. Qualitative comparison on real sequences with motion blur

training step, we request a 𝑡0 camera pose named camera_pre and
a camera_pre at timestep 𝑡 by calling esplatfacto_datamanager.
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Fig. 4. Pipeline components. Each method in Nerfstudio is implemented
as a custom Pipeline. DataManager processes input images into bundles
of rays (RayBundles) that get rendered by the Model to produce a set of
NeRF outputs (RayOutput). A dictionary of losses supervises the pipeline
end-to-end.

Fig. 5. Processed ‘Sewing’ (real-world) and ‘Lego’(synthesis).

5.3 RayBundle, RaySample, and Frustum
The RayBundle is a primitive that represents a slice through 3D
space. By specifying the interval bin spacing, the RayBundle gener-
ates RaySample, which represents sampled chunks of 3D space along
each ray. These chunks, represented as Frustums, can be encoded
either as point samples or as Gaussians with mean and covariance.
A visualization of this abstraction can be found in Fig. 6.

Fig. 6. Different versions of raybundle, in our case, we used the frustum as
Gaussians.

5.4 Model and Field
The RayBundles are sent to Models (ESplatfactoModelConfig) as
input, which samples them into RaySamples. The RaySamples are
consumed by Fields to turn Frustums into color or density. We re-
main most parts of the Splatfacto except we feed the loss function
in Eq. 10 to the training Pipeline.

�̂� = 𝐿(𝑡) − 𝐿(𝑡0), 𝐿 = 𝐹 ⊙ 𝐸 (𝑡0, 𝑡) (8)

L1 = MSE(�̂�, 𝐿),LD-SSIM =
1 − SSIM(𝐿, �̂�)

2
(9)

L3DGS = (1 − 𝜆)L1 + 𝜆LD-SSIM (10)

5.5 Esplatfacto training results
From the above description of our method, we should note that the
Esplatfacto approach is a naive implementation for training a 3D
Gaussian splatting model. As such, our vanilla Esplatfacto method
suffers from several drawbacks. We can observe background color
inconsistency in the ground truth image generation, as shown in
Fig. 5, which is caused by normalization during the debayering filter
recovery stage. It is also worth noting that the debayering method
differs between the training and ground truth generation stages.
Furthermore, we did not apply clipping or masking in our training,
resulting in numerous background floaters in our training viewer
compared to EventNeRF, which clips the training region of interest
to a cylindrical shape. Additionally, we did not incorporate negative
sampling, as discussed in Sec. 3.4.

Fig. 7. The overall Esplatfacto training interface in NerfStudio (top). Gray-
scale training result of ‘drums’ (bottom left), RGB training result of ‘drums’
(bottom right).

6 CONCLUSION
In this project, we explore the possibility of applying event-streams
onto the state-of-the-art 3D Gaussian Splatting for scene reconstruc-
tion and novel-view synthesis. With the formulation of event-based
optimization, 3DGS is able to reconstruct clear 3D structures solely
from event-streams. Our simple yet effective negative-sampling and
robust training further boosts model performance, outperforming
previous EventNeRF by +1 PSNR while reducing the training time
from hours to around 8 minutes. And we also use limited number
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of blurry RGB images to refine the appearance. In addition, our
pipeline also works well in forward looking examples. We also inte-
grate our method into the open-source project NeRF-Studio, making
it more usable and scalable for future research.
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