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Abstract

Service load replication performed on multiaxial hydraulic test rigs has been widely applied in automotive engineering for
durability testing in laboratory. The frequency-domain off-line iterative learning control is used to generate the desired
drive file, i.e. the input signals which drive the actuators of the test rig. During the iterations an experimentally identified
linear frequency-domain system model is used. As the durability test rig and the specimen under test have a strong
nonlinear behavior, a large number of iterations are needed to generate the drive file. This process will cause premature
deterioration to the specimen unavoidably. In order to accelerate drive file construction, a method embedding complex
conjugate gradient algorithm into the conventional off-line iterative learning control is proposed to reproduce the
loading conditions. The basic principle and monotone convergence of the method is presented. The drive signal is
updated according to the complex conjugate gradient and the optimal learning gain. An optimal learning gain can be
obtained by an estimate loop. Finally, simulations are carried out based on the identified parameter model of a real
spindle-coupled multiaxial test rig. With real-life spindle forces from the wheel force transducer in the proving ground
test to be replicated, the simulation results indicate that the proposed conventional off-line iterative learning control with
complex conjugate gradient algorithm allows generation of drive file more rapidly and precisely compared with the state-
of-the-art off-line iterative learning control. Few have been done about the proposed method before. The new method is
not limited to the durability testing and can be extended to other systems where repetitive tracking task is required.
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Nowadays, the off-line iterative learning control

Intreduction (ILC) is the current state-of-the-art technique in dur-

The service load replication in laboratory has been
used extensively in automotive industry. The hydrau-
lic, multiaxial test rig is widely applied to perform
the service load replication.' Compared with the
time consuming and expensive proving ground test,
the service load replication can avoid the adverse
impact of reliance on driver and weather or traffic
conditions but also offer better surveillance of fatigue
crack. In addition, with compressed target load time
histories that have been reduced in length but pre-
serve the same damage potential as the original mea-
sured signals, it can reduce dramatically the duration
time of durability testing,' ™ especially suitable for the
new vehicle development.

ability testing. This method was proposed by Cryer in
1976 and applied in the automotive industry.’ In the
off-line ILC, the identified linear frequency-domain
system model is adopted. Usually the hydraulic test
rig and the specimen under test can show strong
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nonlinearity,’ which might require the drive signal to
be generated with a large amount of iterations. For
sake of minimizing the premature deterioration to the
specimen, accelerating the iteration convergence rate
has the great significance.®

Lots of efforts have been undertaken by several
researchers to cope with this problem from different
aspects. The identified model through low-level excit-
ing signal can be inaccurate, so more precise model
can be obtained by averaging several FRF models
according to the coherence function.” Cornelis et al.®
utilizes the forward prediction method to adapt the
linear inverse model after each iteration so as to com-
pensate for the modeling error and to improve the
convergence rate.

Time domain modeling will allow extension of
the ILC approach to systems with significant nonli-
nearity or time-varying behavior.” Raath® introduces
the state-space time domain system identification to
road simulation. De Cuyper and Verhaegen'® also
adopt the state-space models to identify an industrial
scat test rig and use the stable dynamic inversion
to invert the obtained state-space models. The
Autoregressive Moving Average Model with exogen-
ous inputs is selected to identify a two-poster test
rig.!! Moten et al.'”> make use of adaptive inverse
plant modeling technique to identify the system
where the length of finite impulse response filters
must be sufficient. Muller et al.'*"'* identify directly
the time domain inverse model of multiaxial test
rig without inverting the model like traditional
method and the structure of model is optimized
based on the correlation of the outputs leading to
more control stability. Although parametric time
model can achieve comparable accuracy with shorter
measurement data, an order has to be selected for
cach part of the multivariable model which is onerous.
Nonlinear system identification has also been investi-
gated.'® Xu et al.'”"'® propose a nonlinear ILC based
on moving horizon model inversion to improve the
computational efficiency and the inversion problem
is regarded as nonlinear least squares problem
solved by the constrained Gauss—Newton method.
A nonlinear inverse model-based ILC is also pre-
sented to compensate the dynamics of test rig.'’
However, the nonlinear model requires numerical
optimization and is still computationally infeasible
for the long time signal.

Many researchers resort to combining ILC with
other method to improve the convergence rate. For
instance, Vaes et al.,*® De Cuyper,”! De Cuyper
et al.?? extend the ILC scheme with an online Hs
feedback controller. In order to improve the control-
lability of test rig, Johansson and Abrahamsson®
design a passive control loop whereby a structural
component is applied to the system. Tang et al.** aug-
ment the off-line ILC with modified internal model to
cope with the modeling error. However, it is not feas-
ible to design a feedback controller or internal model

for every component under test and the design of
extra controllers is burdensome.

In order to speed up the convergence rate, ILC
based on optimization has been studied as well.*
For instance, Owens>® and Owens et al.”’ develop
the Norm Optimal ILC and Parameter Optimal
ILC. In addition, the optimization techniques such
as Newton method?® and quasi-Newton method®
have been employed to ILC. The above-mentioned
optimized/optimal ILC methods are all applied to
the lifted system® where input and output vectors
are considered as discrete finite vectors. When the
target signal is super-vector the scale of the system
model will be huge, which can weaken the convergent
rate of ILC implementation considerably.

All above researchers have promoted the gener-
ation process of drive file. To seek more suitable
approach for multiaxis road test rig is still a challenge.
The conjugate gradient (CG) method as an effective
optimizing technique requires little storage and
computation and is especially suitable for solving
the large-scale nonlinear optimization problems.?'
So a new method embedding complex CG into the
conventional off-line ILC (CGILC) is proposed to
accelerate the acquirement of desired drive file for
durability testing. The augmented CGILC combines
the merit of conventional ILC and CG algorithm and
is a full-automatic procedure, which does not require
expert intervention.

The remainder of the paper is organized as follows.
The next section describes the experimental test rig
and its mathematical model. “The classical off-line
ILC scheme in automotive industry” section reviews
the theoretical background of the classical off-line
ILC method. “The off-line ILC based on CG opti-
mization algorithm” section presents basic mathemat-
ical theory and the principle of CGILC and analyzes
the monotone convergence of the proposed method.
“Simulation results and discussion” section discusses
the simulation results and validates the effectiveness
of the method. Finally, “Conclusion’ section presents
the conclusions of the paper.

In this work lower case bold letters (e.g. u) and
upper case bold letters (e.g. G) denote vectors and
matrices, respectively. In “The classical off-line ILC
scheme in automotive industry” and “The off-line
ILC based on CG optimization algorithm” sections
the dependency of the angular frequency o (rad/s) is
omitted and time dependency functions will always be
specified.

Experimental test rig description

Figure 1 shows the MTS 329 spindle-coupled test
rig for suspension testing. The simulation model will
be established based on mathematical theory and the
data acquired from this system in order to represent
the real experimental condition. By means of the
approximate model, the proposed method can be



Wang et al.

Figure 1. MTS 329 spindle-coupled test rig for suspension
testing.

validated and the unexpected damage to the commer-
cial specimen under test can also be avoided.

As shown in Figure 1, the MTS 329 6-DOF spin-
dle-coupled test rig can reproduce the lateral, longitu-
dinal, vertical, steer, brake, and camber movement
to impose three force components and three torque
components on each spindle, allowing more realistic
service load replication.?’ Each six-axis mechanical
movement of the test rig should have as little cross
coupling as possible,** e.g. the unique configuration of
the longitudinal and vertical channels provides a pure
vertical straight-line locus at the spindle center, with
minimal compensation from the longitudinal channel.

As shown in Figure 2, the system consists of a
McPherson front independent suspension under test,
the hydraulic test rig, and the PID controllers which
control each actuator.”!

The classical off-line ILC scheme in
automotive industry

In order to analyze the control law, the desired tra-
jectories (1) = {ri(0),.. .,rN(t)}T, the measured
responses y(1) = {yi(1),..., yM(t)}T, and the drives

u(t) = {w (), ..., uN(t)}T are transformed into the fre-
quency domain. In the hypothesis of the system
behaving linearly and being time invariant, the
system can be described as

y=Gu M

=

=

S -
T

PID

Figure 2. The control system of road test rig.
PID: Proportional-Integral-Derivative controller.

Figure 3. The classical off-line iteration control scheme.?!

where u € CV*! is denoted as spectra of the drive sig-
nals, y € C*! as the spectra of measured response,
and G € C™*V as the frequency response function
(FRF) matrix of system.

As already mentioned, the classical frequency
domain iterative approach suggested by Dodds® is
widely applied in industry for durability tests on vehicle
prototypes (Figure 3). Fundamentally, this approach is
comprised of two consecutive steps: system identifica-
tion and drives tuning. In the identiﬁgation phase, the
identified experimental FRF matrix G' is typically cal-
culated with the H; method.?' Because the drive signals
as inputs sent to the test rig are known exactly, the H,
method assuming that there is no noise in the inputs is
an appropriate technique to calculate the FRF
matrix.?!

Suppose the desired trajectory r € C**! is given,
the tracking error can be expressed as

e=r—y (@)

The desired trajectory can be replicated completely
when tracking error approximates to zero

r=Guy 3)

where uy is the optimal drive signal.
Define the mechanical impedance matrix as follows

Z=G" 4
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where the superscript + denotes the Moore—Penrose
pseudo-inverse.

The drives tuning employs the identified inverse
FRF matrix (the mechanical impedance matrix) to
acquire the optimal drive u, iteratively

Uyl = uk+a/cé+e/c =w+taZey k=0,1,23--- (5

where a is the iteration learning gain for iteration index
k, satisfying 0 <oy <1 and Z is the identified mechan-
ical impedance matrix, which can be calculated based
on the singular value decomposition of G.

For specimen safety, the identification signal of the
classical off-line ILC is usually low-level exciting
signal. The identified linear frequency-domain model
G is utilized. The strong nonlinearity of the hydraulic
test rig and the specimen under test has an adverse
impact on the convergence rate of the classical off-line
ILC. When a large amount of iterations are inevitable,
a small learning gain o is adopted at the beginning
and then the learning gain increases gradually with
experience.

The off-line ILC based on CG
optimization algorithm

The principle of ILC with optimization

Numerical iterative methods are common in compu-
tational mathematics to solve the nonlinear equations.
The desired drive signal u, in fact is the optimal solu-
tion of nonlinear control system inputs.>® The control
action is performed in the frequency domain, so an
optimization problem over the complex space is
needed to be solved.

A gradient-based technique such as the Newton’s
method has been extended to the complex space.®* ¢

Let z € CV*!, then z 2 [zz :| is defined. The super-

*

script -*, -#, and -7 denote the complex conjugate,

the complex conjugate transpose, and the transpose,
respectively. The real-valued function about z can be
represented as’

f@2f(z.7), CY >R (6)

The second-order Taylor expansion of f(Z) can be
expressed as®

- 2 -—
fG+AD =@+ A:?.Tafa—(;) + % Az aazf ;?T Az (7

The complex gradient of equation (7) can be com-
puted as®

G+ Ay U@ FE) .
aAZ*  azr  9zrazT (3
= Vf(2) + V[ (2)AZ

where V/(Z) is the gradient and V?/(Z) is the Hessian
matrix.

In order to find the minimum of equation (6), equa-
tion (8) should be equal to 0. Based on equation (8),
the following expression should be satisfied*’

@ (HE\ Y@
97" 02T <8z3z7> |: Az ] _ |:_8_z*:| (9)

PG PG Az _Y®
9z07T dzoz i
PIE) _

Assuming 7% = 0, then the increment Az can be
obtained

2 —1 -
Az= _(3'f(z)> () (10)

dz*ozT 0z*

In MIMO control case, the Euclidean norm of
error between the target and response signal is con-
sidered to be optimization function. The tracking
error e will be zero at the optimum drive vectors so
the assumption %9 =0 holds in a neighborhood
of optimum vectors.-

Define real scalar objective function of optimiza-

tion problem about the drive u as follows™

min (@) 2 T(u, u*)
= [le|)? an
=(r—Gu)'(r— Gu),C" > R

where ||-|| denotes the Euclidean vector norm meaning
vl = VT, =+vHy, v € CV*!.

Assuming the system as linear time invariant
system, the complex CG vector can be obtained

VI = Bg‘lf*u) =—-G"(r—Gu)=-G"¢ (12)

Subsequently, the complex Hessian matrix*’ can be
derived

8% (ir)
VI = =G 1
ou*ou” GG (13)

where GG is positive definite Hermitian matrix for
the physical system.

Based on the steepest descent method, the kth
search direction dy, is defined as

d = —VI% (14)

And the steepest descent iteration control law is

W = w + opdy = upto Gey (15)
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Considering the Newton’s method, the search dir-
ection dy is given by

de = V2T vr, = (67G) ' Ge (16)

The physical system model G is usually unknown
so it is replaced by the identified FRF matrix G. Thus,
the Newton iteration control law can be expressed as

AH A -1 AH A+
Wy = uk—l—ak(G G) G e = w+o G e (17)

The classical off-line ILC method can be deduced
based on the Newton’s method and can be regarded
as a particular example of optimization problem. The
identified FRF matrix G is fixed and the learning gain
is adjusted manually. Then, a new ILC method is
proposed in the following part.

The proposed ILC based on complex CG algorithm

The method of CGs was proposed by Hestenes
and Stiefel to solve the linear equation.’’ Thereafter,
CG was generalized to nonlinear problems®' by
Fletcher and Reeves (FR). This method requires little
storage and computation and is especially suitable for
solving the large-scale nonlinear optimization prob-
lems. As a consequence, combine the classical off-line
ILC with the CG algorithm in complex domain to
accelerate the generation of drive file.

Applying the identified system impedance matrix,
the initial drive signal is given by

w =Gy r = Zor (18)

Taking the initial input as drive signal for test rig,
the initial tracking error can be generated

e =r—y,=r—Gu (19)
Then, the drive signal is updated as follows
W = ug + ody (20)

AH
with dy = —VIy = GO €.
The searching direction is updated as follows

diy1 = =VTig + Brdy (21

The gradient can be described as

AH
VI, = -G e, 22)

The searching direction of the classical off-line
iterative control is the Newton direction, which is
invariant. And the CG method is the steepest descent
direction, which is updated with B.

There are many choices about the parameter f; in
equation (21), such as FR method, Polak—Ribiere

method (PR),>' and many other variant versions.
The PR method possesses a built-in restart feature
that addresses the jamming problem.*® so the PR
algorithm is chosen as follows

Re{VI (VI — VW)
VIV,
Re(VIjy1, Vg1 — VIT)
(Vrka VFI{)

Bi+1 =
(23)

In the classical off-line ILC, a small learning gain
ay is adopted at the beginning and then the learning
gain is adjusted manually with the iterations.

In order to get the optimal iteration gain, an exact
line search is performed, where the objective function
is defined as

min  P(a) = P (o, o)

aeC R (24)
= ||r — G(u; + (L\lkdk)”~

Calculate d®/do* = 0 to yield the learning gain

_ (GdY"e (Gl er)
(Gd) G, (Gd, Gdy)

(25)

k

In reality, the optimal learning gain o is
impossible to be calculated due to unknown physical
model G according to equation (25). A solution to this
problem is proposed by inserting an estimating
phase.*®

In the estimating phase, the concrete procedure is
shown as follows

Wy = W + Ady (26)
where 4 denotes the step size of estimating phase and

the choice method has been investigated by many
researchers,>®*! which is defined as

H |2
G e0||

A AH H2

@7
GG €

Multiplying the two sides of equation (26) by G
results in

Gﬁk+1 = Gu; + /Gdy (28)
Vi1 = ¥i + /G, (29)

Applying the two response of test rig leads to

1,. 1.
Gd; = 7 (Vi1 —¥e) = 7 & (30)
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Identif}é the FRF

¥

Calculate impedance
matrix and initial drive:

Generate the time
domain drive: u,(r)

0
w2,
)
2
=
=
S

Calculate ¢,
Measure system actual || e = u, + 24, and new drive:
response: r u, =, +a,d,
(0 e | ¥
: Update direction

dpy =V, + fd]

I
|
|
No ' calculate _T
|
|
|
|

racking error in
time-domain:
g:(f)=r(r)=y: (1)

| VT, and g,

Figure 4. The flow chart of the proposed CGILC scheme.
FRF: frequency response function.

Furthermore, equation (25) can be formulated as

<ék ) ek)
<ék ) ék)

1)

Olk=/1

Finally, the CGILC method is specified, of which
the flow chart is exhibited in Figure 4.

Monotonic convergence of CGILC

Subsequently, a convergence analysis of the CGILC
algorithm follows:

Theorem. Assume {ep,e;,...,ex+1, ---} as the
tracking error sequence generated by the CGILC
algorithm, then the following relation holds

et H2< llex!” (32)

Proof

ey =1 — Gupyy
=r— G(ug + aidy)
=r— Gllk — O(kGdk
= e, — o, Gdy (33)

lexsn | —llexll> = —au (e, Gdy) — o} (G, )
+ a/t()l](<Gd/(, Gdy)
(Gdy, ex) (ex, Gdy)
(Gdy., Gdy,)

|G e’
- _ T <0 34
I Gdll® G4

This demonstrates that the tracking error can con-
verge monotonically. The monotonic convergence
concerns the searching direction and the optimal gain.

Simulation results and discussion

As shown in Figure 1, a McPherson front independent
suspension fastened on the fixture has been tested.
The front suspension is excited at the front wheel
axle by vertical displacement, and lateral and longitu-
dinal forces. The responses are the vertical, lateral,
and longitudinal spindle forces measured by wheel
force transducer (WFT), which results in a 3 x3
system. The experimental FRF matrix of test rig is
calculated with H; method and the identification exci-
tation signals are low-level uncorrelated white-pink
noise signals with frequency range from 0 to 50 Hz.

The magnitude and phase frequency characteristics
of the longitudinal (force-to-force) FRF, lateral
(force-to-force) FRF, vertical (displacement-to-force)
FRF, and the coupling FRFs between different chan-
nels are shown in Figure 5(a) and (b), respectively.
Figure 5 also depicts a comparison between the
experimental FRF matrix G (blue solid) and estimated
FRF matrix G (red dotted), where the columns repre-
sent the inputs and the rows the outputs. The ampli-
tude and phase from the G3; and G5, are very noisy so
the coupling between vertical output and longitu-
dinal/lateral input is small. From G13; and G, the
coupling between longitudinal/lateral output and ver-
tical input is relatively large. At high frequency region
of G, and G, the coupling is small.

The parameter model G is estimated by recursive
least squares algorithm, which can be expressed as

{ 4.3360—52° + 5.515¢—322 — 1.021e — 2z }

4512le—3
(5 243724 + 7.9082° — 7.39272
4+3.5752—0.7183

(35)

—0.003052°4-0.0094232% — 0.008697:= }

. +0.002325
Gu= 74 — 3.571234+4.837z2 — 2.9522+0.6863
(36)
—0.048192° + 0.11552% — 0.1235= }
- + 0.05019
Gy 1=

(37)
2 —1.345240.65942340.96212>
—0.223z — 0.4349
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Figure 5. Experimental FRFs and identified frequency characteristics of the test rig: (a) Magnitude characteristics of system and

(b) phase characteristics of system.

—0.0003999z° — 0.001462z% — 0.007173=
—0.005307

Gi=
. 25 2.0022% +0.4482° + 1.56722
— 13272 4 0.3343
(38)
— 1.2366—223 4+ 4.142¢—22%> — 2.642¢ — 2z
G —2.347¢ -3
= 2 236124 + 1.0652° + 1.45622
—1.633z — 0.4731
(39)
—0.012522% — 0.01252240.03551z
é —0.01942 )
(5 2170324 +1.3532340.83222
—0.7277z — 0.08502
- —34692247010z — 3541
G3= (41)
4 —3.5192314.84922 — 3.094240.7657
o 792522 — 275402419530
BT 4 1.6182% —0.10952241.6357 — 0.8681
(42)
- 288922 + 16400z — 14370
Gy=

24 —3.06123 4 3.9022% — 2.378z + 0.6038
(43)

As can be seen from Figure 5, the estimated FRF
matrix G matches the experimental FRF matrix G well
in most region. The order of transfer function deter-
mines the matching precision. The high-frequency
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Figure 6. Time waveform of target force signal of three
channels. (a) longitudinal target force, (b) lateral target force,
(c) vertical target force.

dynamics needs to be represented by higher order
model, which can match the physical more accurately.
The choice of order of the transfer function should
be trade-off between model complexity and accuracy.
But it is unnecessary to match accurately because the
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difference between experimental FRF matrix G and the
parameter model G can be regarded as the uncertainty
between the identification model and the physical
system.

Subsequently, the MIMO model G will be used to
replace the physical system to verify the feasibility of the
proposed CGILC algorithm in order not to jeopardize
the specimen. Real-life spindle forces are measured by
WEFT in the proving ground test and the force responses
as target signal need to be replicated. As shown in
Figure 6, the force target signals of three channels all
have a total length of 21s corresponding to a rough
road drive, which results in high amplitude forces.

The initial drive signal is calculated with the experi-
mental FRF and the target force signal according to
equation (18). The first excitation level is set to 20%
of the initial drive signal similar to the real-life experi-
mental operation for safety reason.

In order to quantitatively compare the convergence
rate of the different methods, the relative root mean

—
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<
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Figure 7. Relative RMS error comparison between the CGILC
and the classical ILC with different gain factors. (a) longitudinal
RMS error, (b) lateral RMS error, (c) vertical RMS error.
CGILC: complex CG into the conventional off-line ILC; ILC:
iterative learning control.

square (RMS) error of every channel is adopted and
the definition is as follows

Zf”— . [ritk)—yi())*
erps, = M 100% (44)

I~M (k)
k=0"M

where 7 denotes the channel number and M is the length
of the target and output signals discrete time series.
The RMS threshold of convergence is set to 1%
for three channels. Figure 7 shows the relative RMS
error of the classical ILC and proposed CGILC.
As depicted in Figure 7, the larger gain the classical
ILC has, the faster convergence rate is. In Figure 7(b),
when the gain of the classical ILC is set to 0.75, lateral
channel diverges because the coupling between lateral
output and two other direction inputs are large. At
the same time the lateral channel has little influence
on the other two directions due to small coupling
between lateral input and two other direction outputs.
So a small gain should be set in the classical ILC to
guarantee the convergence of all channels. The RMS
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Figure 8. Time waveforms of spindle force (after five iter-
ations). (a) longitudinal spindle force, (b) lateral spindle force,
(c) vertical spindle force.

CGILC: complex CG into the conventional off-line ILC; ILC:
iterative learning control.
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values of the fifth iteration have been labeled in
Figure 7. Obviously, it can be observed that a com-
parable accuracy has been reached in less iterations
for the proposed CGILC although the convergence
rates of three channels are different. The coupling
between vertical output and longitudinal/lateral
input is smallest as mentioned above so the CGILC
makes vertical channel converge faster than other dir-
ection as shown in Figure 7(c). All three channels with
the proposed CGILC need only six iterations to con-
verge so it speeds up the overall process duration.

The iteration gain factor is fixed to 0.5 for the clas-
sical ILC. The time waveforms, which are obtained
after five iterations with two methods, are shown in
Figure 8. It can be seen that the waveforms with
CGILC and target signals match better including
the peak amplitude. Figure 9 exhibits tracking error
after the fifth iteration. Just as discussed in Figure 7
the lateral channel is more difficult to converge due to
coupling so the tracking error is higher as shown in
Figure 9(b). It can be concluded from Figure 9 that
more accurate results can be obtained with the
CGILC with less iterations compared with the clas-
sical ILC.
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Figure 9. Tracking error comparison between the classical ILC
and CGILC methods (after five iterations). (a) longitudinal track-
ing error, (b) lateral tracking error, (c) vertical tracking error.
CGILC: complex CG into the conventional off-line ILC; ILC:
iterative learning control.

Figure 10 displays the power spectral density
(PSD) after the fifth iteration, respectively. It is clear
that the energy is concentrated below 20 Hz and lower
amplitudes occur on higher frequency. The peak PSD
of three channels is located at 5 and 2 Hz, where the
PSD with CGILC method matches the target better.
In conclusion, the CGILC can obtain the same
damage level as the target signal with less iterations.

Figure 11 compares the results of ILC and the pro-
posed CGILC after five iterations with XY histogram.
The response for one direction is plotted along
the vertical axis, while the target signal for this chan-
nel is plotted along the horizontal axis. In the ideal
case, when response signal is equal to the target signal,
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Figure 10. Power spectra of the target and the outputs
simulated with the classical ILC and CGILC methods (after five
iterations). (a) longitudinal PSD, (b) lateral PSD, (c) vertical PSD.
CGILC: complex CG into the conventional off-line ILC; ILC:
iterative learning control.
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Figure 11. XY histogram between the target and the outputs simulated with the classical ILC and CGILC methods (after five

iterations). (a) longitudinal XY histogram, (b) lateral XY histogram, (c) vertical XY histogram.
CGILC: complex CG into the conventional off-line ILC; ILC: iterative learning control.

the resulting plot is a straight line under 45°.
The vertical outputs for both methods have more con-
centrated distribution than other directions. From
Figure 11, it can be seen that the proposed method
has better plots and the distribution is more concen-
trated on a straight line.

Conclusion

A new CGILC scheme is proposed to cope with the
cumbersome drive signal generation process for dur-
ability test rig. This method can guarantee the track-
ing errors decrease monotonically. Through the
estimating loop, an optimal learning gain can be
acquired readily without calculating the inverse
Hessian matrix of system. Simulation results reveal
that a comparable accuracy can be reached in less
iteration with the CGILC compared to the classical
ILC, which can make a significant difference espe-
cially for the long time sequence to be replicated in
automotive industry. The proposed approach toward
multiple-channel implementation has been investi-
gated through simulation. The physical multiaxial
road test rig for control research is under construction
and actual tests will be carried to validate the pro-
posed procedure.
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a drive signal of learning loop

Appendix u(?) drive signal in time domain

Notation uy optimal erve signal .
y response in frequency domain

(3 complex number space »(1) response in time domain

d iteration direction vector y response of learning loop

e tracking error in frequency domain z complex number

é tracking error of learning loop 4 mechanical impedance matrix

G FRF matrix of system z identified mechanical impedance matrix

G+ Moore—Penrose pseudo-inverse . . .

A . . a iteration gain

G experimental FRF matrix . . . . .

= . B iteration step size of conjugate gradient

G estimated parameter model .

. . . . algorithm
r desired trajectory in frequency domain .
. . . . ERMS, relative RMS error

(1) desired trajectory in time domain i . .
A step size of learning loop

R real number space

L . . 1) angular frequency
u drive signal in frequency domain



